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ABSTRACT

Initial research on vitamin E and cancer has focused on a-tocopherol (aT), but recent clinical studies on cancer-preventive effects of aT

supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in

cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as g-tocopherol

(gT), d-tocopherol (dT), g-tocotrienol (gTE), and d-tocotrienol (dTE), have far superior cancer-preventive activities than does aT. These vitamin E

forms are much stronger than aT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)– and 5-lipoxygenase

(5-LOX)–catalyzed eicosanoids, and transcription factors such as nuclear transcription factor kB (NF-kB) and signal transducer and activator of

transcription factor 3 (STAT3). These vitamin E forms, but not aT, cause pro-death or antiproliferation effects in cancer cells via modulating various

signaling pathways, including sphingolipid metabolism. Unlike aT, these vitamin E forms are quickly metabolized to various carboxychromanols

including 139-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors.

Consistent with mechanistic findings, gT, dT, gTE, and dTE, but not aT, have been shown to be effective for preventing the progression of

various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of gT, dT, gTE, and dTE

in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-

known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
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Introduction
The number of diagnosed cancer cases is expected to grow
worldwide from 13.3 million in 2010 to 20 million by
2030 (1). Because of the genetic heterogeneity and complex-
ity of advanced cancer, cancer treatment has faced tremen-
dous challenges, including drug resistance and a high
frequency of recurrence. The development of effective pre-
vention strategies, such as early detection and early interruption
of the carcinogenic process, is important in reducing

cancer mortality (2, 3). Chemoprevention, including the use
of natural and synthetic compounds for preventing or delaying
cancer development to a late stage, is an important public
health strategy for decreasing cancer burden. Until recently,
the study of vitamin E for cancer prevention has mostly cen-
tered on a-tocopherol (aT), the predominant form of vitamin
E in tissues. Although epidemiologic studies have consistently
reported an inverse association between aT and cancer risk,
studies of the potential use of aT for preventing cancer have
shown inconsistent and disappointing outcomes inmany large
randomized studies (4–6). The results of the Selenium and
Vitamin E Cancer Prevention Trial (SELECT) surprisingly
showed that dietary supplementation of aT at 400 IU/d
appeared to increase the risk of prostate cancer in healthy
men compared with placebo (7). In contrast, other forms of
vitamin E and long-chain vitamin E metabolites have been
shown to have robust cancer-prevention effects inmechanistic
studies and preclinical cancer models, whereas aToften showed
weak or ineffective anticancer effects in these studies. In this re-
view, we focus on the role of different forms of vitamin E
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[i.e., g-tocopherol (gT), d-tocopherol (dT), g-tocotrienol
(gTE), and d-tocotrienol (dTE)] in cancer prevention and
treatment in cell-based mechanistic studies and preclinical
models as well as some human clinical studies that were in-
spired by the encouraging outcomes from basic and transla-
tional research.

Current Status of Knowledge
Vitamin E forms and metabolites
Natural forms of vitamin E include (RRR)-aT, b-tocopherol
(bT), gT, and dTand (R)-a-tocotrienol (aTE), b-tocotrienol
(bTE), gTE, and dTE, all of which have a chromanol ring
and a phytyl side chain (Figure 1A). Although tocopherols
have a saturated side chain, tocotrienols have 3 double
bonds on the side chain. All vitamin E forms are lipophilic
antioxidants because they have the phenolic group on the
chromanol ring that can donate a hydrogen atom capable

of scavenging lipid peroxide radicals (8). Vitamin E forms
are naturally synthesized by plants and are rich in nuts, plant
seeds, and plant oils (8–10). Humans and animals rely on
these food sources to obtain vitamin E. Dietary amounts
of specific vitamin E forms vary greatly among different
food sources (8).

Despite sharing similar structures and antioxidant activ-
ities, vitamin E forms differ greatly in bioavailability and
metabolism. Among the 8 members of naturally occurring
vitamin E, aT is the predominant form of vitamin E in
the blood and tissues and low intakes of this form result
in vitamin E deficiency–associated ataxia (11). Serum con-
centrations of aT in humans can vary from <20 to >50 mM
with a half-life (T1/2) reported to be ;28–30 h, depending
on the intake of this vitamin and food components, espe-
cially dietary fat contents (12). Compared with aT, other
vitamin E forms have lowered bioavailability and a 4- to

FIGURE 1 Chemical structures of vitamin E forms and vitamin E metabolism. (A) Structures of natural forms of vitamin E. (B) Vitamin E
forms [e.g., gT (shown here)] are metabolized by side-chain oxidation to form various carboxychromanols and sulfated
carboxychromanols. CEHC, carboxyethyl-hydroxychroman; COOH, carboxychromanol; aT, a-tocopherol; bT, b-tocopherol; dT,
d-tocopherol; gT, g-tocopherol; aTE, a-tocotrienol; bTE, b-tocotrienol; dTE, d-tocotrienol; gTE, g-tocotrienol.
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8-times shorter T1/2. For instance, serum concentrations of
gT range from 1–5 (diet intake) to 10–30 (supplementa-
tion) mM (13, 14) and dTE has maximum concentrations
of 4–16 mM and T1/2 of 3–4 h upon oral intake of 200–
3200 mg of this form of vitamin E (15, 16). The high bioavail-
ability of aT in tissues is a result of its binding to a-tocopherol
transport protein (TTP), which prevents aT from being ca-
tabolized (8). Unlike aT, other vitamin E forms are readily
metabolized via cytochrome P-450 (CYP4F2 or murine
Cyp4f14)–catalyzed side-chain oxidation, including hy-
droxylation and oxidation of the terminal carbon 139 in
the endoplasmic reticulum to form 139-hydroxychromanol
(139-OH) and 139-carboxychromanol (139-COOH). The
subsequent degradation is believed to take place in the mi-
tochondria or peroxisomes via b-oxidation to form vari-
ous shorter chain COOHs, including 119-, 99-, 79-, and
59-COOHs as well as the terminal metabolite 39-COOH,
which is also called 39-carboxyethyl-hydroxychroman (CEHC)
(Figure 1B). Conjugated metabolites including sulfated
long-chain COOHs and sulfated CEHCs are detected in cir-
culation after supplementation of vitamin E forms, suggest-
ing that sulfation takes place parallel to side-chain oxidation
(17, 18).

Because some vitamin E metabolites have been shown to
have anti-inflammatory and even anticancer effects (8), their
bioavailability is of great interest for determining their con-
tribution to the bioactive effects of vitamin E forms. g-CEHC
has been reported to reach #5–10 mM in the serum of hu-
mans after gT supplementation (13, 14); and CEHCs, conju-
gated CEHCs, and, to a lesser degree, 5-COOHs are the
predominant metabolites found in urine (19). Long-chain
metabolites, especially sulfated 119-COOHs, have been reported
in the circulation in rodents supplemented with vitamin E
forms (18). Interestingly, CEHCs, 5-COOHs, and 119-COOHs,
whose conjugation status was unknown, have been found in
the colon of mice supplemented with gT or dT (20). 139-
COOHs, which are low in the circulation, appear to be the
predominant metabolites in feces of rodents fed tocopherols
or tocotrienols (21, 22). Despite the reported bioavailability
of various metabolites, much work is needed to determine
metabolite concentrations, including maximum concentra-
tions, in the circulation and different tissues in humans.

Anticancer mechanisms
All tocopherols and tocotrienols are powerful antioxidants
and may block oxidative stress–induced DNA damage (8,
23). On the other hand, accumulating evidence has indi-
cated that gT, dT, gTE, dTE, and 139-COOHs have much
superior anti-inflammatory and anticancer properties
than aT. In particular, gT, dT, gTE, and dTE inhibit eicos-
anoid formation and 139-COOHs are dual inhibitors
of cyclo-oxygenases (COX-1 and -2) and 5-lipoxgenase
(5-LOX). gTE and dTE also potently suppress activation
of NF-kB or signal transducer and activator of transcription
factor 3 (STAT3). These activities neutralize proinflamma-
tory tumor microenvironments that favor cancer develop-
ment, invasiveness, and resistance to treatment (Figure 2).

Furthermore, these vitamin E forms and metabolites di-
rectly target cancer cells and cancer stem cells (CSCs) by
promoting apoptosis, antiangiogenesis, and antiprolifera-
tion partially via modulating sphingolipids, epigenetic
events, and other signaling pathways (Figure 2). In addition,
emerging research suggests that tocotrienols appear to mod-
ulate immunity, which may also contribute to cancer
prevention.

Anticancer effects via anti-inflammatory activities.
Chronic inflammation contributes to cancer initiation, pro-
motion, progression, and metastasis (24, 25). Inflammation-
associated oxidative stress can cause damage and mutation
to DNA, which constitutes a fundamental etiology of
carcinogenesis. Inflammation also promotes epigenetic
changes that contribute to cancer initiation and promotion
(26). In the progression and late stages of cancer, immune
cells often infiltrate to tumor tissues and interact with tumor
cells to foster a proinflammatory tumor microenvironment,
which promotes cancer development and even metastasis.
Proinflammatory mediators such as eicosanoids and cytokines
secreted by immune and tumor cells are known to facilitate
tumor growth and render resistance to therapy (25, 27).
This section focuses on the role of vitamin E forms and
metabolites in modulating various proinflammatory mediators
and regulators.

FIGURE 2 Molecular mechanisms underlying anticancer
effects of vitamin E forms and 139-COOH. gT, dT, gTE, dTE, and
139-COOHs block multiple cancer-promoting pathways,
including COX- and 5-LOX–mediated eicosanoids such as PGE2
and LTB4, respectively. 139-COOHs are dual inhibitors of COXs
and 5-LOX. gTE and dTE are potent inhibitors of NF-kB and
STAT3. In addition, these vitamin E forms and 139-COOHs can
directly induce cancer cell death and inhibit proliferation. COX,
cyclo-oxygenase; JAK-STAT3/6, Janus kinase-signal transducer
and activator of transcription factor 3/6; LTB4, leukotriene B4;
PGE2, prostaglandin E2; dT, d-tocopherol; gT, g-tocopherol; dTE,
d-tocotrienol; gTE, g-tocotrienol; 5-LOX, 5-lipoxygenase; 139-COOH,
139-carboxychromanol.
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Anticancer effects by inhibition of COX- and 5-LOX–
catalyzed eicosanoids. It has been well recognized that
prostaglandins and leukotrienes, which are synthesized by
COX- (COX-1 and COX-2) and 5-LOX–catalyzed reactions,
respectively, promote tumorigenesis, angiogenesis, and even
metastasis (27). COX-2 and 5-LOX are often upregulated in
tumor cells and cancer tissues (28–33). Overexpression of
COX-2 accelerates colon cancer development (34) and
reduces apoptotic susceptibility of colon cancer cells (35).
COX-1 was also shown to promote angiogenesis and
tumorigenesis (36, 37). Furthermore, PGE2 is elevated in
cancer cells and tissues (28–30) and has been shown to
promote growth, angiogenesis, and resistance to apoptosis
via PGE2 (EP) receptor–mediated signaling in cancer cells
(37, 38). In line with the procarcinogenic role of COXs
and PGE2, COX inhibitors, which are nonsteroidal anti-
inflammatory drugs (NSAIDs), inhibit tumor development
in numerous cancer models (39–41). In addition to PGE2,
blockage of the leukotriene B4 (LTB4) signaling pathway
results in antiproliferation and proapoptosis in colon cancer
(27, 42). Zileuton, a specific 5-LOX inhibitor, suppressed
tumor growth in a colon cancer xenograft model (33).
Consistent with these mechanistic and preclinical studies,
NSAIDs including aspirin and sulindac have proven effective
in preventing colorectal cancer (CRC) in many clinical trials
(2, 43–45). In addition, aspirin may prevent pancreatic cancer
based on a meta-analysis of observational studies (46).

Although randomized trials support the chemopreventive
effectiveness of NSAIDs for CRC (47, 48), the long-term
use of NSAIDs is limited because of associated side effects,
including gastrointestinal bleeding and increased risk
of cardiovascular diseases (49–52). Furthermore, aspirin
showed modest protective effects in some clinical trials
(2). To this end, blocking both COX and 5-LOX pathways
may be a better strategy than targeting either enzyme alone
due to blocking multiple cancer-promoting pathways. Con-
sistently, the inhibition of 5-LOX augments the antitumor ac-
tivity of COX inhibitors (31). In addition, the inhibition of
COXs and 5-LOX may attenuate the adverse effects of COX
inhibitors by preventing shunt of arachidonate metabolism
to 5-LOX–mediated leukotrienes, which are cytotoxic,
proinflammatory, and tumorigenic (31, 53, 54). Thus,
5-LOX inhibitors alleviate gastric lesions induced by aspirin
or indomethacin (53) and the inhibition of 5-LOX augments
the antitumor activity of COX inhibitors (31). Licofelone,
a dual 5-LOX/COX inhibitor, suppressed colon cancer de-
velopment in a preclinical model (55) and shows a favor-
able safety profile (56, 57). Interestingly, simultaneously
targeting both COXs and 5-LOX blocks the progression
of pancreatic ductal adenocarcinoma (58). As a whole, tar-
geting both COX- and 5-LOX–mediated eicosanoids may
offer improved cancer-preventing effects compared with
NSAIDs.

Various forms of vitamin E and novel long-chain metabo-
lites have been shown to inhibit COX- and 5-LOX–catalyzed
eicosanoids. Specifically, gT, dT, and gTE at physiologically
relevant concentrations [the concentration of an inhibitor

causing 50% inhibition (IC50): 2.5–10 mM], but not aT, in-
hibited COX-2–mediated PGE2 in cellular environments, al-
though they did not directly inhibit the enzyme activity,
indicating vitamin E forms are weak COX-2 inhibitors (59,
60). gT, dT, and gTE inhibit calcium (Ca2+) ionophore–
stimulated LTB4 via blocking calcium influx, whereas to-
copherols do not directly inhibit human 5-LOX activity
(61). Consistent with cell-based studies, gT decreased
PGE2 and LTB4 and attenuated inflammation in various
models in rodents (62–67). Interestingly, we recently showed
that long-chain metabolites of vitamin E, for example, dT-
139-COOH and dTE-139-COOH, which are metabolites of
dT and dTE (68–70), respectively, are potent dual inhibitors
of COX-2 (IC50: 4 and 9.8 mM, respectively) and 5-LOX
(IC50: 1–2 mM) and that dT-139-COOH competitively in-
hibits COXs (60, 61, 71). In agreement with the dual inhibi-
tion of COXs and 5-LOX, dTE-139-COOH suppressed
azoxymethane (AOM)/dextran sodium sulfate (DSS)–
induced colon tumorigenesis more effectively than gT in
mice (71). It is interesting to note that high concentrations
of 139-COOHs are found in feces of mice supplemented
with gT (17, 18, 21, 22). These results indicate that vitamin
E forms and metabolites may exert cancer-preventive effects
via decreasing COX- and 5-LOX–mediated eicosanoids.

Inhibition of NF-kB or STAT3 in immune and cancer
cells. In addition to eicosanoids, proinflammatory cytokines
can drive tumor growth and invasiveness. Tumor-promoting
cytokines are often secreted by various types of cells in the tumor
microenvironment, including tumor-associated macrophages.
Cytokines can also be secreted by cancer cells themselves
and promote cell growth in autocrine matter. These
cytokines, such as IL-6, TNF-a and IL-1, activate NF-kB
and STAT3 in cancer cells. More rarely, NF-kB or STAT3
is activated through mutational activation of upstream
signaling in tumors. In both scenarios, activated NF-kB or
STAT3 acts as a nonclassical oncogene by upregulating genes
that promote cell survival, proliferation, angiogenesis, and
invasiveness (25, 72). Consistently, the inhibition of NF-kB
or STAT3 activation has been shown to suppress cancer
development in animal models (73, 74). Therefore, blocking
NF-kB or STAT3 and their regulated cytokines is considered
to be a potentially effective strategy to preclude tumor
progression.

Vitamin E forms have been shown to block NF-kB or
STAT3 activation and their regulated genes in macrophages
and cancer cells (8). For instance, tocopherols and tocotri-
enols inhibited LPS-stimulated IL-6 in macrophages
and gTE is stronger than tocopherols in this activity
(75–77). Mechanistic studies indicate that gTE decreased
LPS-induced IL-6 by blocking the activation of NF-kB and
inhibiting upregulation of C/EBPb and C/EBPd (75). In
cancer cells, the inhibition of NF-kB and STAT3 by gTE
and dTE prevents upregulation of survival genes and
sensitizes tumor cells to therapeutic drugs (78, 79). In par-
ticular, gTE or its combination with gemcitabine or DHA
downregulated NF-kB or STAT3 target proteins, including
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cyclin D1, MMP-9, c-Myc, and CXCR4, which promote
tumor growth and invasiveness (80, 81). We recently
showed that gTE inhibits TNF-a–stimulated NF-kB by
inducing its negative regulator A20 (82), which is recog-
nized as a tumor suppressor gene in various types of can-
cer (83). Consistent with mechanistic and cell-based
studies, gTE and dTE have been shown to inhibit NF-
kB or STAT3 in preclinical models (78, 79). These obser-
vations indicate that the inhibition of these key regulators
likely contributes to the anticancer effects of gTE and dTE,
potentially overcoming drug resistance as discussed in the
section entitled “Combination and adjuvant therapies:
molecular mechanisms and evidence.”

Immunomodulation for cancer prevention. Immune sur-
veillance has long been recognized to play an important role
in defense against cancer by detecting and killing tumor
cells. Specific tocotrienols have been reported to modulate
immune response. For instance, supplementation of tocotri-
enol mixtures enhanced lymphocyte proliferation without
affecting major cytokines in old but not young C57BL/6
mice (84). This result suggests that tocotrienols may help
improve age-associated impairment of immune functions.
Radhakrishnan et al. (85) examined the potential effects of
aT, dTE, and mixed tocotrienols on tetanus toxoid
immunization in mice and found that dTE and mixed
tocotrienols were stronger than aT in enhancing the
production of antibodies against tetanus toxoid. Interestingly,
while increasing IFN-g and IL-4, these vitamin E forms
decreased TNF-a in stimulated splenocytes. Furthermore,
in a double-blinded, placebo-controlled clinical trial,
tocotrienol-rich supplementation in healthy volunteers
resulted in enhanced production of anti–tetanus toxoid
antibody, IL-4, and IFN-g induced by tetanus toxoid vaccine
challenge, but reduced IL-6 compared with placebo (86).
These data suggest that tocotrienols may be capable of
preventing cancer via immune modulation, although this
hypothesis remains to be further tested.

Anticancer effects via directly targeting cancer cells.

Antiproliferation, induction of death, and inhibition
of invasiveness. gT, dT, gTE, dTE, and 139-COOHs
have been shown to induce growth arrest and apoptosis
and autophagy in various types of cancer cells. In these ac-
tivities, gTE, dTE, and 139-COOHs (IC50: 10–20 mM) ap-
pear to be stronger than gT and dT (IC50: $25–50 mM)
(87–92), all of which are much stronger than aT (72,
93). One potential explanation for these observed differen-
tial activities is that tocotrienols such as gTE appear to be
accumulated at much higher concentrations in cells than
their tocopherol counterparts (88). Tocotrienols have
also been shown to accumulate in cancer but not in normal
tissues in vivo (94, 95).

In numerous cell-based studies, biochemical events as-
sociated with gT- and tocotrienol-induced anticancer ac-
tions have been extensively characterized and reviewed

elsewhere (6, 23, 96). These actions include the activation
of various pathways associated with antiproliferation and
cell stress and death, such as upregulation of PPAR-g ex-
pression (97), inhibition of PI3K-mediated AKT phosphor-
ylation (88–92, 98), and elevation of mitochondria-related
apoptosis proteins such as caspase 9 cleavage (94), autophagy
marker LC3II, and endoplasmic reticulum stress markers
such as c-Jun N-terminal kinase (JNK) phosphorylation,
CCAAT/enhancer binding protein homologous protein
(CHOP), and death receptor (DR) 5 (DR5) proapoptotic
pathway (99). Blocking NF-kB and STAT3 by tocotrienols
in cancer cells also contributes to the anticancer activities
(see section entitled “Inhibition of NF-kB or STAT3 in im-
mune and cancer cells”). In addition, dTE but not aTE in-
hibited tumor cell–induced angiogenesis in an in vivo mouse
angiogenesis assay (100).

Evidence suggests that these biochemical events induced
by vitamin E forms and 139-COOHs may be partially rooted
in their modulating sphingolipids. Sphingolipids such as di-
hydroceramides, dihydrosphoingosine, and ceramides play
important roles in regulating cell death and survival, and
persistent elevation of these sphingolipids is known to cause
stress, inhibit cell growth and induce apoptosis (101–103).
gT, gTE, and 139-COOHs have been shown to readily ele-
vate dihydrosphingosine and dihydroceramides as well as
ceramides in prostate, colon, pancreatic, and breast cancer
cells; and the modulation of these sphingolipids precedes
or coincides with biochemical events associated with
cell death (71, 93, 99, 104). Further mechanistic studiessh-
owed that gTE and 139-COOHs inhibited dihydroceramide
desaturase activity in the pathway of de novo synthesis of
sphingolipids and elevated ceramides during prolonged
treatment, possibly by activation of sphingomyelinase-
catalyzed sphingomyelin hydrolysis (71, 104). Consistently,
blocking the de novo synthesis of sphingolipids partially re-
verses gT- or gTE-caused anticancer effects in cancer cells
(93, 99, 104). In breast cancer cells, the chemical inhibition
of de novo sphingolipid synthesis counteracted the ability
of gT and gTE to induce apoptosis and to activate the
JNK/CHOP/DR5 proapoptotic pathway (99). These data
indicate a molecular interaction between vitamin E–related
compounds and sphingolipids, which in part explains
their anticancer actions and activations of signals of cell
death. Further research is needed to elucidate the nature of
the interaction and to verify whether sphingolipid modulation
can be observed in vivo.

Targeting CSCs. gTE may target CSCs, which are believed
to play important roles in resistance to cancer therapy (105).
Specifically, gTE downregulated the expression of prostate
CSC markers CD133/CD44 in androgen-independent prostate
cancer cells and inhibited the formation of spheroids (106).
Interestingly, although CSC-enriched PC-3 cells (CD133-
positive) were resistant to docetaxel, these cells and CD133-
negative cells were sensitive to gTE treatment (106). Husain
et al. (107) showed that dTE inhibited the growth of
pancreatic stemlike cells and prevented pancreatic cancer
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metastasis. Gopalan et al. (108) showed that gTE eliminated
CSC enrichment in drug-resistant human breast cancer cells via
suppressing STAT3 signaling and activation of the de novo
ceramide synthesis pathway. They also found that the
combination of gTE with simvastatin synergistically enhanced
these effects (108). In addition, gTE or its combination with
DHA decreased aldehyde dehydrogenase (ALDH; a CSC
marker)–positive cells and STAT3 activation via upregulation
of Src homology region 2 domain-containing protein tyrosine
phosphatase 1 (SHP-1) in human triple-negative breast
cancer cells (81). These observations strongly suggest that
tocotrienols are capable of targeting CSCs that are often
the source of drug resistance, but the role of this action in
the whole-body environment and the underlying mechanisms
remain to be determined.

Modulation of epigenetic mechanisms. Emerging evi-
dence suggests that vitamin E forms may have an impact
on epigenetic events, which play critical roles in cancer
development. dTE suppressed the Notch-1 pathway by
upregulating miR-34a in non–small cell lung cancer cells,
which appears to be partially responsible for induction of
apoptosis and inhibition of cell growth and invasiveness
(109). dTE suppressed radiation-induced microRNA-30
and protected mice from radiation injury (110). In the
transgenic adenocarcinoma of the mouse prostate (TRAMP)
model, gT-rich mixed tocopherols inhibited CpG methylation
in the promoter of nuclear factor erythroid 2–related factor
(Nrf2) compared with control and decreased the expression of
DNA methyltransferases (DNMTs), including DNMT1,
DNMT3A, and DNMT3B, in the prostate of mice (111). In
addition, a tocotrienol mixture inhibited prostate tumor
growth, which was associated with epigenetic modification,
including acetylation of CDK inhibitors p21 and p27 (112).
Despite these interesting observations, little is known
about the mechanisms underlying epigenetic modulation
by vitamin E forms and to what extent these effects
contribute to anticancer effects in vivo.

Combination and adjuvant therapies: molecular
mechanisms and evidence
The potential use of gTE and dTE as an adjuvant for en-
hancing the effectiveness of chemotherapeutic drugs has
been investigated in cells and preclinical models. First, tu-
mor cells have altered lipid metabolism, including elevated
cholesterol synthesis, compared with nontransformed
cells. Excessive lipids and cholesterol in cancer cells appear
to be associated with cancer aggressiveness and recurrence
(113–115). Therefore, blocking cholesterol synthesis may
improve therapeutic efficacy. To this end, gTE or dTE,
combined with statins that are inhibitors of b-hydroxy-
b-methylglutaryl coenzyme A (HMG-CoA) reductase in
cholesterol synthesis, synergistically decreased the growth
of colon (116), breast (117), and pancreatic and melanoma
(118, 119) cancer cells. gTE or dTE has been shown to
cause degradation of HMG-CoA reductase and thus de-
crease cholesterol synthesis in liver cells (120). The synergy

of gTE and statins was explained by the fact that gTE in-
hibited statin-induced upregulation of HMG-CoA reduc-
tase (116). Second, TNF-related apoptosis-inducing
ligand (TRAIL) is a promising chemotherapeutic agent,
but its anticancer efficacy is limited by drug resistance. It
has been shown that a combination of gTE and TRAIL syn-
ergistically exerted anticancer effects via induction of the
TRAIL receptors, including DR4 and DR5 (121). Third, ac-
tivated NF-kB and STAT3 in cancer cells are known to con-
tribute to drug resistance. gTE was found to promote
anticancer effects of chemotherapeutic drugs such as pacli-
taxel, capecitabine (oral precursor of 5-fluorouracil), and
doxorubicin via downregulation of NF-kB–dependent
antiapoptotic genes in vitro and in vivo (78, 80, 122).
These results strongly suggest that gTE and dTE may
be useful in combination or as adjuvant therapy for en-
hancing the effectiveness of cancer treatment and sensi-
tizing cancer cells to chemotherapeutic drugs.

Anticancer efficacy of tocopherols in preclinical
models
On the basis of the anti-inflammatory and anticancer activ-
ities observed in mechanistic studies, gT has been proposed
to be potentially effective for cancer prevention and is likely
superior to aT in anticancer efficacy (5, 123). Over the past
decade, the anticancer efficacy of gT-, dT-, and gT-rich
mixed tocopherols (gTmTs) has been tested in various pre-
clinical models, and some studies compared the effect of
these vitamin E forms with aT (Table 1). The effect of these
tocopherols on tumor initiation and promotion has been
tested in cancer models induced by carcinogens such as
N-nitroso-N-methylurea (NMU), 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine (PhIP), or AOM. Xenograft
models with implanted cancer cells in mice were used to
evaluate the effect on tumor growth in late-stage cancer.
There were also studies that used genetically engineered
murine cancer models to examine the effectiveness of to-
copherols for cancer prevention.

Prostate cancer. The effect of gTor gTmTs on prostate can-
cer development has been examined in many preclinical
models, including carcinogen (NMU, PhIP)-induced prostate
epithelial dysplasia, genetically engineered spontaneous
[transgenic rat for adenocarcinoma of prostate (TRAP),
TRAMP] prostate cancer, xenograft models with implanted
human prostate cancer cells (LNCaP, 22Rv1), and prostate
Dunning R3327H adenocarcinoma in male Copenhagen
rats (Table 1). Because these models recapitulate different-
stage prostate cancer development, the impact of tocopherols
on the disease in these models indicates their potential
role in preventing cancer from early precancerous lesions
to relatively late-stage tumor development.

In the NMU or PhIP-induced prostate cancer models,
gT, dT and gTmT inhibited mouse prostate intraepithelial
neoplasia (PIN), an early precancerous lesion. In the
PhIP-induced model, dT was more effective than gT or aT
in preventing PINs (125). In the TRAP and TRAMP model
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TABLE 1 Cancer-preventive effects of tocopherols in preclinical models1

Animal model Vitamin E forms and doses Outcomes

Prostate cancer
NMU-induced epithelial dysplasia in the rat
ventral prostate

gT-enriched diet (20 mg/kg) for 4 mo (124) gT Y NMU-induced epithelial dysplasia by 38%
and cell proliferation, COX-2, and MMP-9 in the
ventral prostate

PhIP-induced prostate carcinogenesis in
hCYP1A mice

gTmTs (0.3%) or tocopherols (i.e., gT, dT, or aT
at 0.2% in diet) (125)

gTmTs or tocopherols Y PhIP-induced mouse
PINs by 66%; dT was stronger than gT or aT in
this effect

TRAP gT at 50, 100, and 200 mg/kg diet for 7–10 wk;
aT at 50 mg/kg diet (126)

gT, not aT, dose-dependently Y PIN to
adenocarcinoma and [ apoptosis in prostate
tissue

TRAMP mice gTmTs at 0.1% in diet (113, 127) gTmTs Y palpable tumor incidence by 75% and
PINs and [ Nrf2 and its targeted genes by Y
CpG methylation

LNCaP-xenograft model in nude mice gT at 125 mg/kg bw 3 times/wk for 4 wk (88);
aT or dT at 0.3% of diet for 48 d (128)

gT and dT, but not aT, Y the growth of LNCaP
tumor by 30% and induced apoptosis in tumors

Dunning R3327H adenocarcinoma cells
implanted in male Copenhagen rats

gT at 200 mg/kg or its combination with
lycopene (250 mg/kg diet) (129)

Neither gT or its combination with lycopene had
a significant impact on tumor growth

Human PCa cell 22Rv1-implanted tumor in
Nu/J mice

MSA (40.95 μg/kg bw), gT at 20.83 or
41.66 mg/kg bw in corn oil, alone or in
combinations by gavage (130)

Combination of MSA with gT showed the
strongest Y tumor volume (;25%), serum PSA
and Ki67

Colon cancer
AOM-induced ACF formation in the colon of
male F344 rats

gTmTs at 0.1% of diet (131); dT, gT, aT, or
gTmTs at 0.2% of diet (20); dl-a-tocopheryl
acetate (500 mg/kg) (132)

gT, dT, or gTmTs (131)Y ACF with relative efficacy
of dT (62%) . gT ;gTmTs (48%) (20), whereas
aT 4 ACF (20, 132)

AOM-induced and DSS-promoted colon
cancer in mice (polyps as endpoints)

gT at 0.1% of diet in male Balb/c mice (21);
gTmTs at 0.17% and 0.3% in male CF-1
mice (133)

gT Y moderate colitis–promoted large-size
tumors by 36–80% (21); gTmTs Y tumorigenesis,
nitrotyrosine, PGE2, and LTB4 (133)

Colon tumorigenesis induced by PhIP/DSS in
hCYP1A mice

gT, dT, or aT at 0.2% of diet starting 1 wk
before PhIP administration and continuing
until being killed; in some studies, dT
intervention started after PhIP and DSS
(134)

gT and dT (but not aT) Y tumor multiplicity by
45% and 64%, but not tumor volume, and Y
oxidative stress, NF-kB, and STAT3; when
intervention started after PhIP/DSS, dT was
much less effective

Breast cancer
NMU-induced hormone-dependent
mammary tumor in female
Sprague-Dawley rats

gTmTs at 0.1%, 0.3%, and 0.5% (135, 136); aT,
dT, or gT (0.3% diet) or gTmTs (0.3%) (137)

gTmTs Y tumor growth and multiplicity by 38%,
50%, and 80% and [ p21, p27, caspase 3, and
PPAR-g (136); dT and gT (not aT), Y tumor
multiplicity or weight and [ apoptosis (137)

Estrogen 17β-estradiol E2-promoted
mammary hyperplasia and tumor in ACI
rats

gTmTs at 0.3% of diet for 1, 3, 7, and 14 d after
estrogen implantation (138); gTmTs at
0.05%, 0.1%, 0.3%, and 0.5% of diet for
31 wk (139)

gTmTs4 E2-induced mammary hyperplasia, but
Y oxidative stress (138); gTmTs (0.3% or 0.5%)
Y tumor size by 52% or 42% and serum
estradiol; [ CYP1A1 (metabolizing estrogen), [
Nrf2, and [ PPAR-g (139)

ER+ MCF7 cancer cells orthotopically
implanted in immunodeficient mice
implanted with estrogen pellets

gTmTs at 0.05%, 0.1%, 0.3%, and 0.5% of diet
for 9 wk (139)

gTmTs at all doses Y mammary tumor and
appeared to be more effective in this model
than ACI rats

MMTV/ErbB2/neu female transgenic mice
that overexpress Her-2

aT, gT, or dT (0.3% of diet) or gTmTs (0.3% of
diet) for 35 wk (137)

Only gT diet [ the median tumor latency, but
none of the treatment was effective in
reducing tumor weight

Murine 66c1-4 GFP or MDA-MB231-GFP
breast cancer cells implanted into mice

RRR-aT, synthetic aT, or RRR-gT at 358 or
2000 mg/kg diet (140, 141)

gT and synthetic aT, but not natural RRR-aT, Y
mammary cancer growth and lung metastasis
by 57%, whereas aT counteracted gT’s
anticancer effect

Lung cancer
H1299 human lung cancer cell xenografts in
NCr Nu/Nu mice

aT, gT, dT, and gTmTs at 0.17% or 0.3% of diet
(142)

dT, gT, or gTmTs (not aT) Y tumor size by 50%,
35%, and 40%, respectively; Y DNA damage
and nitrotyrosine; [ apoptosis

CL13 murine lung cancer cells implanted
(subcutaneously) in A/J mice

gTmTs at 0.1% or 0.3% (143) gTmTs Y the growth of CL13 tumors by 50–80%

1 The typical formula of gTmTs contains 57–60% gT, 21–24% dT, 12–13% aT, and 0.5–1.5% βT. ACF, aberrant crypt foci; AOM, azoxymethan; bw, body weight; COX-2, cyclo-oxygenase 2; CYP1A1,
cytochrome P4501A1; DSS, dextran sodium sulfate; ER+ , estrogen receptor positive; hCYP1A, humanized CYP1A; LTB4, leukotriene B4; MMP-9, matrix metallopeptidase 9;
MSA, methaneseleninic acid; NMU, N-methyl-N-nitrosourea; Nrf2, nuclear factor erythroid 2–related factor; PCa, prostate cancer; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]
pyridine; PIN, prostate intraepithelial neoplasia; PSA, prostate specific antigen; STAT3, signal transducer and activator of transcription factor 3; TRAMP, transgenic
adenocarcinoma of the mouse prostate; TRAP, transgenic rat for adenocarcinoma of prostate; aT, a-tocopherol; βT, β-tocopherol; dT, d-tocopherol; gT, g-tocopherol;
gTmT, gT-rich mixed tocopherol; Y, suppressed or inhibited; [, increased or enhanced; 4, showed no effect.
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that captures the development of neoplasia to tumor, gT
or mixed tocopherols suppressed cancer progression from
PIN to adenocarcinoma and decreased palpable tumor inci-
dence, which was accompanied by increased apoptosis and
enhanced Nrf2 via modulating DNA methylation (111,
126, 127). In LNCaP- or 22Rvl-implanted xenograft models
that mimic late-stage tumor, gTmodestly suppressed tumor
growth, and its combination with methaneselenic acid more
strongly inhibited tumor development than either agent
alone. On the other hand, in the study in Dunning
R3327H adenocarcinoma rats, which represented slow-
growing prostate cancer (adenocarcinoma or beyond)
(144), gT or its combination with lycopene did not
have a significant impact on tumor growth, probably be-
cause of the relatively low dose used (0.02% of diet) or
lack of efficacy in blocking further progression of adeno-
carcinoma to advanced cancer.

Overall, gT-, dT-, or gT-rich tocopherols appeared to
be capable of inhibiting initiation and early-stage prostate
intraepithelial neoplasia formation and suppressing pro-
gression from prostate intraepithelial neoplasias to ade-
nocarcinoma, whereas they only modestly slowed the
growth of relatively late-stage tumors. Therefore, gT,
dT, and gTmTs are likely promising agents for preventing
relatively early-stage prostate cancer.

CRC. The chemopreventive effectiveness of aT, gT, dT, and
gTmTs has been extensively studied in carcinogen-induced
CRC models, including AOM-induced aberrant crypt foci
(ACF), a surrogate marker of precancerous lesions. In this
model, gT, dT, and gTmTs significantly inhibited ACF
formation and dT appeared to be stronger than gT or
gTmTs in this effect, whereas aT was found to be
ineffective (Table 1). aT was also not effective toward
colon tumorigenesis induced by meat-derived PhIP (145).
In addition to AOM-induced ACF formation, AOM
combined with DSS, which causes colon inflammation, has
been shown to accelerate tumor formation in the colon.
The AOM-DSS model is considered to mimic inflammatory
bowel disease–promoted colorectal cancer in humans (146,
147). In the AOM-DSS-induced model, gT or gTmTs
suppressed the multiplicity of polyps that are adenomas or
adenocarcinomas, although their anticancer effectiveness
appeared to depend on the severity of colitis. In particular,
gT was more effective in attenuating tumor formation with
moderate colitis than with severe colitis (21). In a recent
study, gT and dT but not aT were found to significantly
reduce colon tumor formation that was induced by PhIP
and promoted by DSS-induced colitis in CYP1A-humanized
(hCYP1A) mice. In this model, the chemopreventive effects
were much stronger when tocopherol intervention started
before PhIP-DSS was administered than after initiation
and promotion of carcinogenesis (134). These results
indicate that gT, dT, or gTmTs, but not aT, are able to
suppress chemically induced colon tumorigenesis.

Breast cancer. The effect of tocopherols on breast cancer
development varied with animal models. For instance, gT or
dT, but not aT, suppressed estrogen receptor (ER)-positive
breast cancer induced by NMU in female Sprague-Dawley
rats. In this model, gTmTs also dose-dependently suppressed
NMU-induced mammary tumors (Table 1). Furthermore,
gTmTs (at 0.3% or 0.5%) suppressed estrogen-induced
hyperplasia and mammary tumor in ACI rats, via
decreasing serum estradiol, by inducing the estrogen-
metabolizing enzyme CYP1A1 (139). gT and gTmTs,
but not aT, were effective in suppressing xenograft
MDA-MB231 (ER-negative, low HER-2) or MCF7 (ER-
positive, low HER-2) human breast cancer growth in nude
mice (148). It is noticeable that an estrogen-sensitive MCF7
xenograft appeared to be more responsive to the treatment
of gTmTs than the ER-negative MDA-MB231 tumor. On the
other hand, none of aT, gT, dT, or gTmTs had a significant
impact on tumor multiplicity or weight in MMTV-Erb2/neu
transgenic mice with HER-2 overexpression, although gT
significantly increased the median mammary tumor latency.
These data indicate that gT, dT, and gTmTs, but not aT, are
capable of preventing estrogen-dependent mammary tumors,
but none of these is effective in inhibiting HER-2–positive
breast cancer.

Lung cancer. gT, dT, and gTmTs, but not aT, have been re-
ported to inhibit tumor growth and decrease oxidative stress
markers in lung cancer xenograft models (Table 1).

Anticancer efficacy of tocotrienols in animal models
Early animal studies on tocotrienols for chemoprevention
have focused on tocotrienol-rich fractions (TRFs) extracted
from palm oil (4). These TRFs showed anticancer effects in
xenograft breast cancer studies in nude mice (149), sponta-
neous hepatocarcinogenesis, induced lung cancer (150), and
UV-B–damaged skin (95, 151). Here we will focus on recent
research on the in vivo anticancer effects of gTE, dTE, and
TRFs from various sources (palm oil, rice bran, and annatto),
as well as their use as adjuvant therapy for sensitizing che-
motherapeutic agents or radiation therapy (Table 2).

Pancreatic cancer. The potential chemoprevention effect of
dTE against pancreatic cancer has been examined in various
transgenicmousemodels.Mutations in the KRAS proto-oncogene
are found in >90% of invasive pancreatic ductal adenocarci-
nomas (PDAs) and are believed to represent a key initiating
event of pancreatic cancer (168). LSL-K-rasG12D;PDX-1Cre
mice bear the Kras mutation in pancreas epithelium, which
therefore mimics the most common genetic lesion of the hu-
man PDA. Importantly, these mice developed preinvasive and
invasive ductal pancreatic cancers that were histologically
indistinguishable from those observed in patients with
PDA (168). In this model, dTE at 200 mg/kg body weight
2 times/d resulted in increased median survival, decreased
incidence of invasive cancer, and suppressed pancreatic intra-
epithelial neoplasm progression (152). In addition to this
model, dTE or its combination with gemcitabine was
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also tested in a more aggressive pancreatic model, LSL-
Kras(G12D)/+;LSLTrp53(R172H)/+;Pdx-1-Cre (KPC),
in which mice are genetically engineered with double
mutations (i.e., oncogenic Kras and tumor suppressor p53)
(153). In this model, dTE and its combination with
gemcitabine suppressed tumor development and markedly
enhanced survival compared with control or even
gemcitabine-treated mice.

In addition to the role in chemoprevention, tocotri-
enols or their combinations with chemotherapeutic drugs
have been tested for the treatment of pancreatic cancer in
various xenograft models. To this end, both gTE and dTE
have been reported to inhibit pancreatic tumor growth and
enhanced the antitumor efficacy of gemcitabine in nude
mice that were orthotopically implanted with different
types of human pancreatic tumors (Table 1). The mecha-
nisms underlying these anticancer actions include inhibi-
tion of NF-kB and cell proliferation and induction of
apoptosis.

Prostate cancer. The effect of tocotrienols on prostate tu-
mor growth has been evaluated in various xenograft models
that represent relatively late-stage prostate cancer, although
one study tested mixed tocotrienols in TRAMP mice, which
resemble relatively aggressive prostate cancer development.
Specifically, gTE inhibits tumor development in nude
mice implanted with androgen-sensitive human prostate
adenocarcinoma (LNCaP) xenografts and is stronger than
gT in this effect (88). gTE alone inhibited androgen-
independent PC3 prostate tumor growth in nude mice,
and its combination with docetaxel showed an even stronger
inhibition of tumor growth (154). In another xenograft
model, mixed tocotrienols in diets inhibited prostate tumor
development and increased CDK inhibitors p21 and p27 via
elevating H3K9 acetylation of their promoters (112). In
addition, mixed tocotrienols have been shown to suppress
prostate tumor development in the TRAMP model (156).
These results indicate that gTE or mixed tocotrienols
may be effective for slowing down prostate cancer progres-
sion, although their efficacy should be further tested in
patient-derived xenograft models.

Breast cancer. A dTE/gTE mixture inhibited spontaneous
breast cancer development and lung metastasis in HER-2/neu
transgenic mice (157), which suggests that tocotrienols
may be stronger than tocopherols, which failed to inhibit
the growth of HER-2 overexpression mammary tumors
(137). In nude mice implanted with breast and pancreatic
cancer cells, the combination of gTE and docetaxel led to
much stronger suppression of tumor growth than either agent
alone (23). In addition, a TRF enhanced anticancer effectiveness
of dendritic cell–based immunotherapy in a xenograft model
in immunocompetent mice (158).

Melanoma and skin cancer. gTE and dTE or a tocotrienol
mixture have been shown to delay and suppress tumor

growth compared with vehicle control groups in B16
(F10)- or A375-implanted melanoma in mice (159,
162). Interestingly, the delivery of a tocotrienol mixture
via targeting transferrin receptors on tumor cells resulted
in enhanced anticancer efficacy (161). In addition, a
combination of dietary dTE and lovastatin suppressed the
growth of implanted mouse melanoma B16(F10) more
strongly than either agent alone in C57BL female mice
(160).

Liver, colon, and gastric cancer. gTE and dTE have been
reported to inhibit the growth of hepatoma in xenograft
models, and tocotrienols were found to be accumulated spe-
cifically in tumors but not in normal tissues (95, 164). Toco-
trienols extracted from rice and palm oil have been shown to
block colon cancer growth in 2 xenograft models in mice
(165, 166). A dTE and gTE (8:1) mixture is stronger than
TRF (gTE rich) in the inhibition of AOM-DSS-induced
colon cancer in mice (163). gTE improved capecitabine’s
anticancer effects in an HCT116 xenograft model (Table 3).
In addition, gTE was found to improve the anticancer
efficacy of capecitabine in a human gastric cancer–xenograft
mouse model (122).

gTE as an adjuvant in radiation therapy. Tocotrinols
have been shown to enhance the efficacy of cancer radiation
therapy. Kumar et al. (155) reported that g-irradiation com-
bined with gTE at 400 mg/kg body weight (via subcutaneous
injection in the neck), but not radiation or gTE alone, re-
duced the size of established tumors and increased lipid per-
oxidation in tumors in athymic mice implanted with human
prostate cancer PC-3 cells. Meanwhile, gTE at 200 mg/kg
body weight administered subcutaneously before radiation
protected hematopoietic stem and progenitor cells in mice
after total-body irradiation (170) and accelerated the
recovery of white blood cells in irradiated mice (171).
Consistently, dTE at 400 mg/kg (subcutaneous) protected
100% of CD2F1 mice from total-body irradiation-induced
death, increased regeneration of hematopoietic microfoci
and stem and progenitor cells in irradiated mouse bone
marrow, and protected human CD34+ cells from radiation-
induced damage (172). In addition, gTE (400 mg/kg)
improved postirradiation survival, enhanced hematopoietic
recovery, and reduced intestinal radiation injury in mice
(173). These studies strongly suggest that tocotrienols may be
useful for adjuvant therapy for increasing treatment efficacy
and reducing irradiation-associated adverse effects, including
decreased white blood cell counts.

Toxicity of tocopherols and tocotrienols
When tocopherols and tocotrienols are considered for
long-term use for cancer prevention, it is important to sys-
temically evaluate the safety of these compounds. Tasaki
et al. (174, 175) investigated the potential toxicity of
long-term (#2 y) exposure to a tocotrienol mixture in
Wistar Hannover rats. The tocotrienol mixture contained
aTE 21.4%, bTE 3.5%, gTE 36.5%, dTE 8.6%, aT 20.5%,

860 Jiang

D
ow

nloaded from
 https://academ

ic.oup.com
/advances/article-abstract/8/6/850/4772196 by guest on 07 January 2020



bT 0.7%, gT 1.0%, and dT 0.5%. It was observed that 1-y
chronic exposure to 2% tocotrienol mixture diets resulted
in a reduction in the survival rate by 42% in rats. A 2-y ex-
posure to a 1–2% tocotrienol mixture induced highly prolif-
erative liver lesions (nodular hepatocellular hyperplasia),
although no obvious neoplastic characteristics were found
from increased exposure. In a 13-wk feeding study, Nakamura
et al. (176) reported that a similar tocotrienol mixture did
not cause any observable adverse effects at 120 mg/kg
body weight, although there slight adverse effects shown at
473 mg/kg and adverse effects including decreased body
weight at 1895 mg/kg body weight. In addition, Yap et al.
(154) determined the acute toxicity of gTE by single

intraperitoneal injection of escalating doses in C57BL/6
black male mice and found that gTE at 800 mg/kg body
weight did not cause any deaths among 5 injected mice,
whereas deaths started to occur when 1000 mg/kg was
used. In addition to research in animals, the safety of rela-
tively high doses of gT and dTE has been examined in
healthy humans. Supplementation of gT at #1.2 g for 8 d
did not result in obvious adverse effects in healthy subjects
(14). In a multiple-dose study, dTE was found to be well tol-
erated at doses#3.2 g for 14 d, although some subjects expe-
rienced grade 1 or 2 adverse events (19). These results indicate
that vitamin E forms are generally safe in healthy subjects.
On the other hand, the safety of these compounds under

TABLE 3 Published and ongoing clinical studies on tocopherols and tocotrienols for cancer prevention or therapy1

Study design (ref) Subjects or purpose of study Vitamin E forms Outcomes

Breast cancer
TRF on breast cancer:
double-blinded,
placebo-controlled
intervention (169)

Women aged 40–60 y, with tumor
node metastases stage I or II
breast cancer or estrogen
receptor; 120 subjects in each
group; the study lasted for 5 y

Control: 20 mg TAM with placebo
(soybean oil); intervention: TRF at
200 mg + 20 mg TAM

No statistical difference between
TAM and TAM + tocotrienols in
mortality rate

Tocotrienols in combination with
neoadjuvant chemotherapy
(NCT02909751)

Whether tocotrienols can improve
the efficacy and reduce the side
effects of chemotherapy before
surgery for breast cancer

Tocotrienol, daily 300 mg 33 along
with chemotherapy drugs

Correlation of changes in NK cells, or
ctDNA, with pathological
response; grade 3–4 side effects

Pancreatic cancer
Window-of-opportunity
preoperative trial: open-label,
phase I trial (16)

25 patients for curative surgical
resection with presumptive
premalignant or malignant
neoplasms of exocrine pancreas

dTE at escalation doses of
200–3200 mg/d for 2 wk
before surgery

dTE is generally safe and induced
apoptosis in dysplastic or
malignant tissues from pancreas

CRC
gTmTs on CRC: randomized early
phase I trial (NCT00905918)

Patients undergoing surgery for
colorectal cancer

gTmTs for 1 or 2 wk Bioavailability, plasma
F2-isoprostane, inflammation
markers

Tocotrienols as adjuvants for
treatment of CRC, randomized
and double-blinded
(NCT02705300)

Side effects to Folfoxiri +
tocotrienol/placebo as first-line
treatment of metastatic
colorectal cancer

Standard chemotherapy plus
tocotrienol, daily 300 mg 33

Side effects and survival benefits

Prostate cancer
gTmTs on prostate cancer:
randomized early phase I trial
(NCT00895115)

Patients at risk of prostate cancer
or who have prostate cancer

gTmTs for 1 or 2 wk Bioavailability, plasma PSA,
F2-isoprostane, inflammation
markers

Ovarian cancer
Cabazitaxel vs. tocotrienol: a
phase 2 randomized,
open-label study; crossover
(NCT02560337)

Patients with recurrent ovarian
cancer after failure of standard
therapy

Cabazitaxel (25 mg/m2) vs.
tocotrienol (300 mg 33); 3 mo

Survival rate and cancer progression

Tocotrienols as a nutritional
supplement with
bevacizumab; phase 2,
single-group assignment
(NCT02399592)

Patients with advanced ovarian
cancer

Bevacizumab plus tocotrienol,
300 mg

Disease progression

Lung cancer
Tocotrienols as nutritional
supplement; randomized,
double-blind (NCT02644252)

In patients with advanced NSCLC Tocotrienol, 300 mg 33 plus
standard chemotherapy

Disease progression–free survival

1 Data were from published data and https://clinicaltrials.gov. This table shows non-aT vitamin E forms for cancer prevention or treatment in ongoing or published trials,
whereas large trials that focus on aT have been extensively reviewed elsewhere (4, 6). This table does not include the studies whose sole purpose is for obtaining
pharmacokinetic data, in which vitamin E forms are used as part of other dietary factors or antioxidants, or where the vitamin E form was not clearly identified. For those
ongoing (unpublished) studies, the clinicaltrials.gov identifiers (NCT) are indicated. CRC, colorectal cancer; ctDNA, circulating tumor DNA; NSCLC, non–small cell lung
cancer; PSA, prostate specific antigen; ref, reference; TAM, tamoxifen; TRF, tocotrienol-rich fraction; aT, a-tocopherol; gTmT, gT-rich mixed tocopherol; dTE, d-tocotrienol;
X3, 3 times/d.
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disease conditions or in the presence of other drugs remains to
be determined.

Anticancer effects in human intervention studies
All of the large randomized trials on vitamin E focused only
on aT with regard to cancer-preventive potential and have
shown inconsistent and disappointing outcomes, which
have been extensively reviewed elsewhere (4, 6). With regard
to other vitamin E forms, there are observational studies that
reported both positive and negative associations between their
intake and cancer risk. Given the potential confounding fac-
tors in diets, limited conclusions can be drawn on the basis
of the epidemiologic data. In this review, we focus on pub-
lished intervention trials and currently ongoing clinical hu-
man studies (based on https://clinicaltrials.gov) that aim
to test the safety and anticancer efficacy of tocotrienols
and (non-aT) tocopherols (Table 3).

In a double-blinded, placebo-controlled clinical trial, po-
tentially improved therapeutic outcomes from a combination
of a TRF with tamoxifen were tested in women with early-
stage breast cancer. After 5 y of follow-up, tocotrienol adjuvant
therapy did not significantly improve breast cancer–specific
survival rate compared with tamoxifen-placebo controls, al-
though there was a nonsignificant 60% decrease in the
risk of mortality due to breast cancer in the tocotrienol
group compared with the tamoxifen-alone control group
(169). In an open-label, dose-escalation phase I trial,
patients with presumptive premalignant or malignant
neoplasms of the exocrine pancreas for curative surgical re-
section were given various doses of dTE at 200–3200 mg
2 times/d for 13 d. The endpoints of this study included
pharmacokinetics, general safety, and the effect of supple-
ments on cell apoptosis in pancreatic tissues. The key findings
include that dTE was generally safe and induced apoptosis in
dysplastic or malignant tissues from the pancreas (16). In ad-
dition to these 2 published studies, there are several ongoing
trials investigating the effect of gTmTs on colon and prostate
cancer or tocotrienols on cancer treatment (Table 3).

Conclusions
Because aT supplementation failed to show cancer-
preventive effects in many clinical studies but was reported
to increase prostate cancer risk in the SELECT, the role of
other tocopherols and tocotrienols in cancer prevention
has also been questioned. However, as reviewed here, accu-
mulating cell-based and preclinical studies indicate that the
form and metabolism of vitamin E are critically important
factors for vitamin E–related cancer prevention. In particu-
lar, mechanistic and cell-based studies have shown that gT,
dT, gTE, and dTE are much stronger than aT in blocking
multiple cancer-promoting pathways, including COX- and
5-LOX–catalzyed eicosanoids, and gTE and dTE inhibit
key transcription factors such as NF-kB and STAT3 (8).
These vitamin E forms, but not aT, inhibit cancer cell pro-
liferation and induce cancer cell death via modulating vari-
ous signaling pathways, including sphingolipids. Unlike aT,
which is largely unmetabolized, gT, dT, gTE, and dTE are

readily metabolized and their long-chain metabolite 139-
COOHs are unique dual inhibitors of COXs and 5-LOX
and have stronger anti-inflammatory and anticancer effects
than some unmetabolized vitamers (60, 61, 71). Consistently,
gT, dT, gTE, and dTE have been shown to suppress tumor
development in relevant animal cancer models, whereas aT
was often ineffective in similar preclinical studies. Therefore,
it is noteworthy that the lack of anticancer effects of aT in pre-
clinical models is in agreement with no beneficial effect of
its supplementation observed in many randomized clinical
trials (4–6).

Studies in preclinical animal models have shown that gT,
dT, gTE, and dTE exhibit varied anticancer efficacy, and gTE
and dTE often appear to be stronger than tocopherols in
these effects. The relative effectiveness also depends on the
stage and severity of tumorigenesis. For instance, gT, dT,
and gTmTs are effective in preventing early-stage cancer
progression but show modest protection of relatively ad-
vanced or aggressive stages of cancer. gT, dT, and gTmTs sig-
nificantly suppressed tumorigenesis or precancerous lesions
when the intervention started before carcinogenesis was ini-
tiated, whereas they were less effective if supplementation
began after the cancer-promotion phase. These tocopherols
inhibited estrogen-dependent breast cancer but were inef-
fective in HER-2–positive breast cancer, whereas gTE was
able to suppress Her2-positive breast cancer in transgenic
mice. gTE was stronger than gT in inhibiting the growth
of prostate LNCaP xenograft tumor. Furthermore, dTE in-
hibited pancreatic cancer in genetic models with aggressive
driver mutations. These preclinical observations are in agree-
ment with those in cell-based studies in which tocotrienols ex-
hibited stronger anticancer and anti-inflammatory effects than
tocopherols, which may be attributed to the fact that tocotri-
enols are accumulated at higher concentrations in some cancer
cells or tumors than tocopherols and are more readily metab-
olized to bioactive metabolites in vivo (68).

Although different vitamin E forms clearly have antican-
cer potential, in the future more preclinical studies are
needed to validate and optimize their efficacy for cancer pre-
vention and therapy, with an emphasis on translation from
bench to bedside. First, with the exception of dTE on pan-
creatic cancer, more preclinical work should be conducted
to examine the cancer-prevention efficacy of vitamin E
forms in genetically engineered “humanized” models that
have driver mutations found in human cancers. In these
studies, anticancer efficacy should be tested at different
stages of cancer development. Second, combinations of vita-
min E forms with other preventive agents such as statins or
NSAIDs should be explored to achieve enhanced chemopre-
vention effects. Because vitamin E forms are rich in different
foods and dietary components may have a profound impact
on vitamin E’s anticancer effects and bioavailability, it is im-
portant to examine and compare the use of food approaches
with supplementation for cancer prevention. Furthermore,
the potential use of tocotrienols in adjuvant chemotherapy
for enhancing treatment efficacy of traditional therapeutic
agents should be further tested in patient-derived cancer
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models. In addition, the use of nutrition factors for cancer
control or preventing recurrence after chemo- or radiation
therapy is a largely uncharted territory. I propose that vitamin
E forms hold tremendous promise in cancer control, which
warrants investigation. Whether vitamin E forms are capable
of enhancing immunotherapy should also be examined.

With strong preclinical data and further studies in animal
models, vitamin E forms or their combinations with other
agents should be examined in secondary and even tertiary
prevention trials in individuals who are at high risk of can-
cer (e.g., those who have multiple precancerous, genetically
cancer-driven mutations; familial adenomatous polyposis;
or chronic conditions that promote cancer such as colitis)
(177). With regard to treatment, the following areas can
be explored: the use of vitamin E forms as adjuvant therapy
for improving traditional chemotherapy or radiation ther-
apy or the use of vitamin E forms for cancer control and pre-
vention of recurrence as well as improving cancer patients’
quality of life and survival rate. In addition to efficacy, po-
tential toxicity or side effects of vitamin E forms alone or
in combinations with other agents should be extensively in-
vestigated before they can generally be recommended as
chemoprevention or therapeutic agents.
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