

Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy

Qing Jiang

Department of Nutrition Science, Purdue University, West Lafayette, IN

ABSTRACT

Initial research on vitamin E and cancer has focused on α -tocopherol (α T), but recent clinical studies on cancer-preventive effects of α T supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ -tocopherol (γ T), δ -tocopherol (δ T), γ -tocotrienol (γ TE), and δ -tocotrienol (δ TE), have far superior cancer-preventive activities than does α T. These vitamin E forms are much stronger than α T in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)– and 5-lipoxygenase (5-LOX)–catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κ B (NF- κ B) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not α T, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike α T, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γ T, δ T, γ TE, and δ TE, but not α T, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γ T, δ T, γ TE, and δ TE in cells and preclinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer. *Adv Nutr* 2017;8:850–67.

Keywords: long-chain carboxychromanol, tocopherol, tocotrienol, inflammation, food, cancer, adenomas, colitis, biology, medicine

Introduction

The number of diagnosed cancer cases is expected to grow worldwide from 13.3 million in 2010 to 20 million by 2030 (1). Because of the genetic heterogeneity and complexity of advanced cancer, cancer treatment has faced tremendous challenges, including drug resistance and a high frequency of recurrence. The development of effective prevention strategies, such as early detection and early interruption of the carcinogenic process, is important in reducing

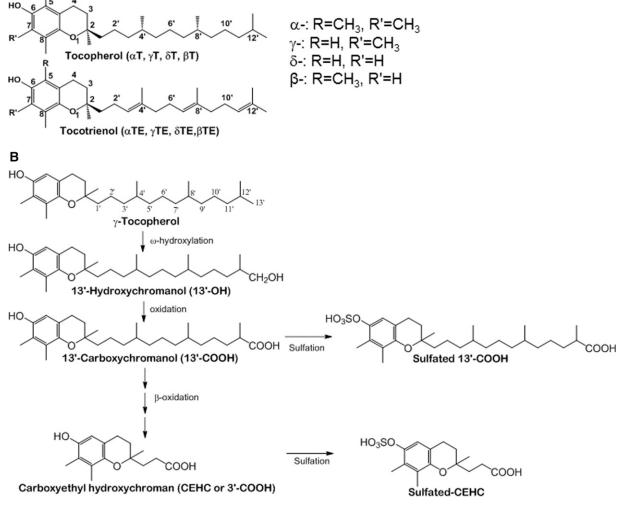
Address correspondence to QJ (e-mail: qjiang@purdue.edu).

cancer mortality (2, 3). Chemoprevention, including the use of natural and synthetic compounds for preventing or delaying cancer development to a late stage, is an important public health strategy for decreasing cancer burden. Until recently, the study of vitamin E for cancer prevention has mostly centered on α -tocopherol (α T), the predominant form of vitamin E in tissues. Although epidemiologic studies have consistently reported an inverse association between aT and cancer risk, studies of the potential use of αT for preventing cancer have shown inconsistent and disappointing outcomes in many large randomized studies (4-6). The results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) surprisingly showed that dietary supplementation of αT at 400 IU/d appeared to increase the risk of prostate cancer in healthy men compared with placebo (7). In contrast, other forms of vitamin E and long-chain vitamin E metabolites have been shown to have robust cancer-prevention effects in mechanistic studies and preclinical cancer models, whereas α T often showed weak or ineffective anticancer effects in these studies. In this review, we focus on the role of different forms of vitamin E

Supported in part by grants R21 CA152588 and R01AT006882 (to QJ) from the NIH. Author disclosures: QJ, no conflicts of interest.

Abbreviations used: ACF, aberrant crypt foci; AOM, azoxymethane; CEHC, carboxyethylhydroxychroman; COOH, carboxychromanol; COX, cyclo-oxygenase; CRC, colorectal cancer; CSC, cancer stem cell; DNMT, DNA methyltransferase; DR, death receptor; DSS, dextran sodium sulfate; ER, estrogen receptor; HMG-CoA, β -hydroxy- β -methylglutaryl coenzyme A; LTB₄, leukotriene B₄; NMU, N-nitroso-N-methylurea; NSAID, nonsteroidal anti-infilammatory drug; PDA, pancreatic ductal adenocarcinoma; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine; PIN, prostate intraepithelial neoplasia; STAT3, signal transducer and activator of transcription factor 3; TRAMP, transgenic adenocarcinoma of the mouse prostate; T_{1/2}, halflife; TRAIL, TNF-related apoptosis-inducing ligand; TRF, tocotrienol-rich fraction; α T, β T, γ T, and δ T, α , β -, γ - and δ -tocophenol, respectively; α TE, β TE, γ TE, and δ TE, α , β -, γ -, γ -, and δ -tocotrienol, respectively; γ TmT, γ T-rich mixed tocopherol; 5-LOX, 5-lipoxygenase.

[i.e., γ -tocopherol (γ T), δ -tocopherol (δ T), γ -tocotrienol (γ TE), and δ -tocotrienol (δ TE)] in cancer prevention and treatment in cell-based mechanistic studies and preclinical models as well as some human clinical studies that were inspired by the encouraging outcomes from basic and translational research.


Current Status of Knowledge Vitamin E forms and metabolites

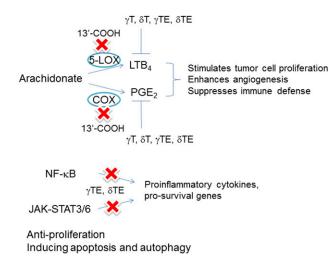
Α

Natural forms of vitamin E include (RRR)- α T, β -tocopherol (β T), γ T, and δ T and (R)- α -tocotrienol (α TE), β -tocotrienol (β TE), γ TE, and δ TE, all of which have a chromanol ring and a phytyl side chain (**Figure 1**A). Although tocopherols have a saturated side chain, tocotrienols have 3 double bonds on the side chain. All vitamin E forms are lipophilic antioxidants because they have the phenolic group on the chromanol ring that can donate a hydrogen atom capable

of scavenging lipid peroxide radicals (8). Vitamin E forms are naturally synthesized by plants and are rich in nuts, plant seeds, and plant oils (8–10). Humans and animals rely on these food sources to obtain vitamin E. Dietary amounts of specific vitamin E forms vary greatly among different food sources (8).

Despite sharing similar structures and antioxidant activities, vitamin E forms differ greatly in bioavailability and metabolism. Among the 8 members of naturally occurring vitamin E, α T is the predominant form of vitamin E in the blood and tissues and low intakes of this form result in vitamin E deficiency–associated ataxia (11). Serum concentrations of α T in humans can vary from <20 to >50 μ M with a half-life (T_{1/2}) reported to be ~28–30 h, depending on the intake of this vitamin and food components, especially dietary fat contents (12). Compared with α T, other vitamin E forms have lowered bioavailability and a 4- to

FIGURE 1 Chemical structures of vitamin E forms and vitamin E metabolism. (A) Structures of natural forms of vitamin E. (B) Vitamin E forms [e.g., γT (shown here)] are metabolized by side-chain oxidation to form various carboxychromanols and sulfated carboxychromanols. CEHC, carboxyethyl-hydroxychroman; COOH, carboxychromanol; αT , α -tocopherol; βT , β -tocopherol; δT , δ -tocopherol; γT , γ -tocopherol; αT , α -tocotrienol; $\beta T E$, β -tocotrienol; $\delta T E$, δ -tocotrienol; $\gamma T E$, γ -tocotrienol.


8-times shorter $T_{1/2}$. For instance, serum concentrations of γ T range from 1–5 (diet intake) to 10–30 (supplementation) μ M (13, 14) and δ TE has maximum concentrations of 4–16 μ M and T_{1/2} of 3–4 h upon oral intake of 200– 3200 mg of this form of vitamin E (15, 16). The high bioavailability of αT in tissues is a result of its binding to α -tocopherol transport protein (TTP), which prevents αT from being catabolized (8). Unlike α T, other vitamin E forms are readily metabolized via cytochrome P-450 (CYP4F2 or murine Cyp4f14)-catalyzed side-chain oxidation, including hydroxylation and oxidation of the terminal carbon 13' in the endoplasmic reticulum to form 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH). The subsequent degradation is believed to take place in the mitochondria or peroxisomes via β -oxidation to form various shorter chain COOHs, including 11'-, 9'-, 7'-, and 5'-COOHs as well as the terminal metabolite 3'-COOH, which is also called 3'-carboxyethyl-hydroxychroman (CEHC) (Figure 1B). Conjugated metabolites including sulfated long-chain COOHs and sulfated CEHCs are detected in circulation after supplementation of vitamin E forms, suggesting that sulfation takes place parallel to side-chain oxidation (17, 18).

Because some vitamin E metabolites have been shown to have anti-inflammatory and even anticancer effects (8), their bioavailability is of great interest for determining their contribution to the bioactive effects of vitamin E forms. γ -CEHC has been reported to reach \leq 5–10 μ M in the serum of humans after γ T supplementation (13, 14); and CEHCs, conjugated CEHCs, and, to a lesser degree, 5-COOHs are the predominant metabolites found in urine (19). Long-chain metabolites, especially sulfated 11'-COOHs, have been reported in the circulation in rodents supplemented with vitamin E forms (18). Interestingly, CEHCs, 5-COOHs, and 11'-COOHs, whose conjugation status was unknown, have been found in the colon of mice supplemented with γT or δT (20). 13'-COOHs, which are low in the circulation, appear to be the predominant metabolites in feces of rodents fed tocopherols or tocotrienols (21, 22). Despite the reported bioavailability of various metabolites, much work is needed to determine metabolite concentrations, including maximum concentrations, in the circulation and different tissues in humans.

Anticancer mechanisms

All tocopherols and tocotrienols are powerful antioxidants and may block oxidative stress–induced DNA damage (8, 23). On the other hand, accumulating evidence has indicated that γT , δT , $\gamma T E$, $\delta T E$, and 13'-COOHs have much superior anti-inflammatory and anticancer properties than αT . In particular, γT , δT , $\gamma T E$, and $\delta T E$ inhibit eicosanoid formation and 13'-COOHs are dual inhibitors of cyclo-oxygenases (COX-1 and -2) and 5-lipoxgenase (5-LOX). $\gamma T E$ and $\delta T E$ also potently suppress activation of NF- κB or signal transducer and activator of transcription factor 3 (STAT3). These activities neutralize proinflammatory tumor microenvironments that favor cancer development, invasiveness, and resistance to treatment (**Figure 2**). Furthermore, these vitamin E forms and metabolites directly target cancer cells and cancer stem cells (CSCs) by promoting apoptosis, antiangiogenesis, and antiproliferation partially via modulating sphingolipids, epigenetic events, and other signaling pathways (Figure 2). In addition, emerging research suggests that tocotrienols appear to modulate immunity, which may also contribute to cancer prevention.

Anticancer effects via anti-inflammatory activities. Chronic inflammation contributes to cancer initiation, promotion, progression, and metastasis (24, 25). Inflammationassociated oxidative stress can cause damage and mutation to DNA, which constitutes a fundamental etiology of carcinogenesis. Inflammation also promotes epigenetic changes that contribute to cancer initiation and promotion (26). In the progression and late stages of cancer, immune cells often infiltrate to tumor tissues and interact with tumor cells to foster a proinflammatory tumor microenvironment, which promotes cancer development and even metastasis. Proinflammatory mediators such as eicosanoids and cytokines secreted by immune and tumor cells are known to facilitate tumor growth and render resistance to therapy (25, 27). This section focuses on the role of vitamin E forms and metabolites in modulating various proinflammatory mediators and regulators.

FIGURE 2 Molecular mechanisms underlying anticancer effects of vitamin E forms and 13'-COOH. γT, δT, γTE, δTE, and 13'-COOHs block multiple cancer-promoting pathways, including COX- and 5-LOX-mediated eicosanoids such as PGE₂ and LTB₄, respectively. 13'-COOHs are dual inhibitors of COXs and 5-LOX. γTE and δTE are potent inhibitors of NF-κB and STAT3. In addition, these vitamin E forms and 13'-COOHs can directly induce cancer cell death and inhibit proliferation. COX, cyclo-oxygenase; JAK-STAT3/6, Janus kinase-signal transducer and activator of transcription factor 3/6; LTB₄, leukotriene B₄; PGE2, prostaglandin E2; δT, δ-tocopherol; γT, γ-tocopherol; δTE, δ-tocotrienol; γTE, γ-tocotrienol; 5-LOX, 5-lipoxygenase; 13'-COOH, 13'-carboxychromanol.

Anticancer effects by inhibition of COX- and 5-LOXcatalyzed eicosanoids. It has been well recognized that prostaglandins and leukotrienes, which are synthesized by COX- (COX-1 and COX-2) and 5-LOX-catalyzed reactions, respectively, promote tumorigenesis, angiogenesis, and even metastasis (27). COX-2 and 5-LOX are often upregulated in tumor cells and cancer tissues (28-33). Overexpression of COX-2 accelerates colon cancer development (34) and reduces apoptotic susceptibility of colon cancer cells (35). COX-1 was also shown to promote angiogenesis and tumorigenesis (36, 37). Furthermore, PGE₂ is elevated in cancer cells and tissues (28-30) and has been shown to promote growth, angiogenesis, and resistance to apoptosis via PGE₂ (EP) receptor-mediated signaling in cancer cells (37, 38). In line with the procarcinogenic role of COXs and PGE₂, COX inhibitors, which are nonsteroidal antiinflammatory drugs (NSAIDs), inhibit tumor development in numerous cancer models (39–41). In addition to PGE_{2} , blockage of the leukotriene B4 (LTB₄) signaling pathway results in antiproliferation and proapoptosis in colon cancer (27, 42). Zileuton, a specific 5-LOX inhibitor, suppressed tumor growth in a colon cancer xenograft model (33). Consistent with these mechanistic and preclinical studies, NSAIDs including aspirin and sulindac have proven effective in preventing colorectal cancer (CRC) in many clinical trials (2, 43-45). In addition, aspirin may prevent pancreatic cancer based on a meta-analysis of observational studies (46).

Although randomized trials support the chemopreventive effectiveness of NSAIDs for CRC (47, 48), the long-term use of NSAIDs is limited because of associated side effects, including gastrointestinal bleeding and increased risk of cardiovascular diseases (49-52). Furthermore, aspirin showed modest protective effects in some clinical trials (2). To this end, blocking both COX and 5-LOX pathways may be a better strategy than targeting either enzyme alone due to blocking multiple cancer-promoting pathways. Consistently, the inhibition of 5-LOX augments the antitumor activity of COX inhibitors (31). In addition, the inhibition of COXs and 5-LOX may attenuate the adverse effects of COX inhibitors by preventing shunt of arachidonate metabolism to 5-LOX-mediated leukotrienes, which are cytotoxic, proinflammatory, and tumorigenic (31, 53, 54). Thus, 5-LOX inhibitors alleviate gastric lesions induced by aspirin or indomethacin (53) and the inhibition of 5-LOX augments the antitumor activity of COX inhibitors (31). Licofelone, a dual 5-LOX/COX inhibitor, suppressed colon cancer development in a preclinical model (55) and shows a favorable safety profile (56, 57). Interestingly, simultaneously targeting both COXs and 5-LOX blocks the progression of pancreatic ductal adenocarcinoma (58). As a whole, targeting both COX- and 5-LOX-mediated eicosanoids may offer improved cancer-preventing effects compared with NSAIDs.

Various forms of vitamin E and novel long-chain metabolites have been shown to inhibit COX- and 5-LOX–catalyzed eicosanoids. Specifically, γT , δT , and γTE at physiologically relevant concentrations [the concentration of an inhibitor causing 50% inhibition (IC₅₀): 2.5–10 μ M], but not α T, inhibited COX-2-mediated PGE2 in cellular environments, although they did not directly inhibit the enzyme activity, indicating vitamin E forms are weak COX-2 inhibitors (59, 60). γT , δT , and γTE inhibit calcium (Ca²⁺) ionophore– stimulated LTB4 via blocking calcium influx, whereas tocopherols do not directly inhibit human 5-LOX activity (61). Consistent with cell-based studies, yT decreased PGE₂ and LTB₄ and attenuated inflammation in various models in rodents (62–67). Interestingly, we recently showed that long-chain metabolites of vitamin E, for example, δT -13'-COOH and &TE-13'-COOH, which are metabolites of δ T and δ TE (68–70), respectively, are potent dual inhibitors of COX-2 (IC₅₀: 4 and 9.8 µM, respectively) and 5-LOX (IC₅₀: 1–2 $\mu M)$ and that $\delta T\text{-}13'\text{-}COOH$ competitively inhibits COXs (60, 61, 71). In agreement with the dual inhibition of COXs and 5-LOX, δTE-13'-COOH suppressed azoxymethane (AOM)/dextran sodium sulfate (DSS)induced colon tumorigenesis more effectively than γT in mice (71). It is interesting to note that high concentrations of 13'-COOHs are found in feces of mice supplemented with γT (17, 18, 21, 22). These results indicate that vitamin E forms and metabolites may exert cancer-preventive effects via decreasing COX- and 5-LOX-mediated eicosanoids.

Inhibition of NF-kB or STAT3 in immune and cancer cells. In addition to eicosanoids, proinflammatory cytokines can drive tumor growth and invasiveness. Tumor-promoting cytokines are often secreted by various types of cells in the tumor microenvironment, including tumor-associated macrophages. Cytokines can also be secreted by cancer cells themselves and promote cell growth in autocrine matter. These cytokines, such as IL-6, TNF- α and IL-1, activate NF- κ B and STAT3 in cancer cells. More rarely, NF-KB or STAT3 is activated through mutational activation of upstream signaling in tumors. In both scenarios, activated NF-KB or STAT3 acts as a nonclassical oncogene by upregulating genes that promote cell survival, proliferation, angiogenesis, and invasiveness (25, 72). Consistently, the inhibition of NF- κ B or STAT3 activation has been shown to suppress cancer development in animal models (73, 74). Therefore, blocking NF-KB or STAT3 and their regulated cytokines is considered to be a potentially effective strategy to preclude tumor progression.

Vitamin E forms have been shown to block NF- κ B or STAT3 activation and their regulated genes in macrophages and cancer cells (8). For instance, tocopherols and tocotrienols inhibited LPS-stimulated IL-6 in macrophages and γ TE is stronger than tocopherols in this activity (75–77). Mechanistic studies indicate that γ TE decreased LPS-induced IL-6 by blocking the activation of NF- κ B and inhibiting upregulation of C/EBP β and C/EBP δ (75). In cancer cells, the inhibition of NF- κ B and STAT3 by γ TE and δ TE prevents upregulation of survival genes and sensitizes tumor cells to therapeutic drugs (78, 79). In particular, γ TE or its combination with gemcitabine or DHA downregulated NF- κ B or STAT3 target proteins, including cyclin D1, MMP-9, c-Myc, and CXCR4, which promote tumor growth and invasiveness (80, 81). We recently showed that γTE inhibits TNF-α–stimulated NF- κ B by inducing its negative regulator A20 (82), which is recognized as a tumor suppressor gene in various types of cancer (83). Consistent with mechanistic and cell-based studies, γTE and δ TE have been shown to inhibit NF- κ B or STAT3 in preclinical models (78, 79). These observations indicate that the inhibition of these key regulators likely contributes to the anticancer effects of γTE and δ TE, potentially overcoming drug resistance as discussed in the section entitled "Combination and adjuvant therapies: molecular mechanisms and evidence."

Immunomodulation for cancer prevention. Immune surveillance has long been recognized to play an important role in defense against cancer by detecting and killing tumor cells. Specific tocotrienols have been reported to modulate immune response. For instance, supplementation of tocotrienol mixtures enhanced lymphocyte proliferation without affecting major cytokines in old but not young C57BL/6 mice (84). This result suggests that tocotrienols may help improve age-associated impairment of immune functions. Radhakrishnan et al. (85) examined the potential effects of αT , δTE , and mixed to cotrienols on tetanus toxoid immunization in mice and found that δTE and mixed tocotrienols were stronger than aT in enhancing the production of antibodies against tetanus toxoid. Interestingly, while increasing IFN- γ and IL-4, these vitamin E forms decreased TNF- α in stimulated splenocytes. Furthermore, in a double-blinded, placebo-controlled clinical trial, tocotrienol-rich supplementation in healthy volunteers resulted in enhanced production of anti-tetanus toxoid antibody, IL-4, and IFN- γ induced by tetanus toxoid vaccine challenge, but reduced IL-6 compared with placebo (86). These data suggest that tocotrienols may be capable of preventing cancer via immune modulation, although this hypothesis remains to be further tested.

Anticancer effects via directly targeting cancer cells.

Antiproliferation, induction of death, and inhibition of invasiveness. γT , δT , γTE , δTE , and 13'-COOHs have been shown to induce growth arrest and apoptosis and autophagy in various types of cancer cells. In these activities, γTE , δTE , and 13'-COOHs (IC₅₀: $10-20 \mu$ M) appear to be stronger than γT and δT (IC₅₀: $\geq 25-50 \mu$ M) (87–92), all of which are much stronger than αT (72, 93). One potential explanation for these observed differential activities is that tocotrienols such as γTE appear to be accumulated at much higher concentrations in cells than their tocopherol counterparts (88). Tocotrienols have also been shown to accumulate in cancer but not in normal tissues in vivo (94, 95).

In numerous cell-based studies, biochemical events associated with γ T- and tocotrienol-induced anticancer actions have been extensively characterized and reviewed elsewhere (6, 23, 96). These actions include the activation of various pathways associated with antiproliferation and cell stress and death, such as upregulation of PPAR- γ expression (97), inhibition of PI3K-mediated AKT phosphorylation (88-92, 98), and elevation of mitochondria-related apoptosis proteins such as caspase 9 cleavage (94), autophagy marker LC3II, and endoplasmic reticulum stress markers such as c-Jun N-terminal kinase (JNK) phosphorylation, CCAAT/enhancer binding protein homologous protein (CHOP), and death receptor (DR) 5 (DR5) proapoptotic pathway (99). Blocking NF-KB and STAT3 by tocotrienols in cancer cells also contributes to the anticancer activities (see section entitled "Inhibition of NF-κB or STAT3 in immune and cancer cells"). In addition, δTE but not αTE inhibited tumor cell-induced angiogenesis in an in vivo mouse angiogenesis assay (100).

Evidence suggests that these biochemical events induced by vitamin E forms and 13'-COOHs may be partially rooted in their modulating sphingolipids. Sphingolipids such as dihydroceramides, dihydrosphoingosine, and ceramides play important roles in regulating cell death and survival, and persistent elevation of these sphingolipids is known to cause stress, inhibit cell growth and induce apoptosis (101–103). γ T, γ TE, and 13'-COOHs have been shown to readily elevate dihydrosphingosine and dihydroceramides as well as ceramides in prostate, colon, pancreatic, and breast cancer cells; and the modulation of these sphingolipids precedes or coincides with biochemical events associated with cell death (71, 93, 99, 104). Further mechanistic studiesshowed that γ TE and 13'-COOHs inhibited dihydroceramide desaturase activity in the pathway of de novo synthesis of sphingolipids and elevated ceramides during prolonged treatment, possibly by activation of sphingomyelinasecatalyzed sphingomyelin hydrolysis (71, 104). Consistently, blocking the de novo synthesis of sphingolipids partially reverses yT- or yTE-caused anticancer effects in cancer cells (93, 99, 104). In breast cancer cells, the chemical inhibition of de novo sphingolipid synthesis counteracted the ability of γT and γTE to induce apoptosis and to activate the JNK/CHOP/DR5 proapoptotic pathway (99). These data indicate a molecular interaction between vitamin E-related compounds and sphingolipids, which in part explains their anticancer actions and activations of signals of cell death. Further research is needed to elucidate the nature of the interaction and to verify whether sphingolipid modulation can be observed in vivo.

Targeting CSCs. γ TE may target CSCs, which are believed to play important roles in resistance to cancer therapy (105). Specifically, γ TE downregulated the expression of prostate CSC markers CD133/CD44 in androgen-independent prostate cancer cells and inhibited the formation of spheroids (106). Interestingly, although CSC-enriched PC-3 cells (CD133positive) were resistant to docetaxel, these cells and CD133negative cells were sensitive to γ TE treatment (106). Husain et al. (107) showed that δ TE inhibited the growth of pancreatic stemlike cells and prevented pancreatic cancer metastasis. Gopalan et al. (108) showed that γ TE eliminated CSC enrichment in drug-resistant human breast cancer cells via suppressing STAT3 signaling and activation of the de novo ceramide synthesis pathway. They also found that the combination of γ TE with simvastatin synergistically enhanced these effects (108). In addition, γ TE or its combination with DHA decreased aldehyde dehydrogenase (ALDH; a CSC marker)–positive cells and STAT3 activation via upregulation of Src homology region 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) in human triple-negative breast cancer cells (81). These observations strongly suggest that tocotrienols are capable of targeting CSCs that are often the source of drug resistance, but the role of this action in the whole-body environment and the underlying mechanisms remain to be determined.

Modulation of epigenetic mechanisms. Emerging evidence suggests that vitamin E forms may have an impact on epigenetic events, which play critical roles in cancer development. TTE suppressed the Notch-1 pathway by upregulating miR-34a in non-small cell lung cancer cells, which appears to be partially responsible for induction of apoptosis and inhibition of cell growth and invasiveness (109). δTE suppressed radiation-induced microRNA-30 and protected mice from radiation injury (110). In the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, yT-rich mixed tocopherols inhibited CpG methylation in the promoter of nuclear factor erythroid 2-related factor (Nrf2) compared with control and decreased the expression of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, in the prostate of mice (111). In addition, a tocotrienol mixture inhibited prostate tumor growth, which was associated with epigenetic modification, including acetylation of CDK inhibitors p21 and p27 (112). Despite these interesting observations, little is known about the mechanisms underlying epigenetic modulation by vitamin E forms and to what extent these effects contribute to anticancer effects in vivo.

Combination and adjuvant therapies: molecular mechanisms and evidence

The potential use of γTE and δTE as an adjuvant for enhancing the effectiveness of chemotherapeutic drugs has been investigated in cells and preclinical models. First, tumor cells have altered lipid metabolism, including elevated cholesterol synthesis, compared with nontransformed cells. Excessive lipids and cholesterol in cancer cells appear to be associated with cancer aggressiveness and recurrence (113–115). Therefore, blocking cholesterol synthesis may improve the rapeutic efficacy. To this end, γTE or δTE , combined with statins that are inhibitors of β-hydroxyβ-methylglutaryl coenzyme A (HMG-CoA) reductase in cholesterol synthesis, synergistically decreased the growth of colon (116), breast (117), and pancreatic and melanoma (118, 119) cancer cells. γTE or δTE has been shown to cause degradation of HMG-CoA reductase and thus decrease cholesterol synthesis in liver cells (120). The synergy of γTE and statins was explained by the fact that γTE inhibited statin-induced upregulation of HMG-CoA reductase (116). Second, TNF-related apoptosis-inducing ligand (TRAIL) is a promising chemotherapeutic agent, but its anticancer efficacy is limited by drug resistance. It has been shown that a combination of vTE and TRAIL synergistically exerted anticancer effects via induction of the TRAIL receptors, including DR4 and DR5 (121). Third, activated NF-KB and STAT3 in cancer cells are known to contribute to drug resistance. yTE was found to promote anticancer effects of chemotherapeutic drugs such as paclitaxel, capecitabine (oral precursor of 5-fluorouracil), and doxorubicin via downregulation of NF-KB-dependent antiapoptotic genes in vitro and in vivo (78, 80, 122). These results strongly suggest that γTE and δTE may be useful in combination or as adjuvant therapy for enhancing the effectiveness of cancer treatment and sensitizing cancer cells to chemotherapeutic drugs.

Anticancer efficacy of tocopherols in preclinical models

On the basis of the anti-inflammatory and anticancer activities observed in mechanistic studies, yT has been proposed to be potentially effective for cancer prevention and is likely superior to αT in anticancer efficacy (5, 123). Over the past decade, the anticancer efficacy of γT -, δT -, and γT -rich mixed tocopherols (yTmTs) has been tested in various preclinical models, and some studies compared the effect of these vitamin E forms with αT (Table 1). The effect of these tocopherols on tumor initiation and promotion has been tested in cancer models induced by carcinogens such as N-nitroso-N-methylurea (NMU), 2-amino-1-methyl-6phenylimidazo[4,5-b]pyridine (PhIP), or AOM. Xenograft models with implanted cancer cells in mice were used to evaluate the effect on tumor growth in late-stage cancer. There were also studies that used genetically engineered murine cancer models to examine the effectiveness of tocopherols for cancer prevention.

Prostate cancer. The effect of γ T or γ TmTs on prostate cancer development has been examined in many preclinical models, including carcinogen (NMU, PhIP)-induced prostate epithelial dysplasia, genetically engineered spontaneous [transgenic rat for adenocarcinoma of prostate (TRAP), TRAMP] prostate cancer, xenograft models with implanted human prostate cancer cells (LNCaP, 22Rv1), and prostate Dunning R3327H adenocarcinoma in male Copenhagen rats (Table 1). Because these models recapitulate different-stage prostate cancer development, the impact of tocopherols on the disease in these models indicates their potential role in preventing cancer from early precancerous lesions to relatively late-stage tumor development.

In the NMU or PhIP-induced prostate cancer models, γT , δT and γTmT inhibited mouse prostate intraepithelial neoplasia (PIN), an early precancerous lesion. In the PhIP-induced model, δT was more effective than γT or αT in preventing PINs (125). In the TRAP and TRAMP model

TABLE 1 Cancer-preventive effects of tocopherols in preclinical models¹

Animal model	Vitamin E forms and doses	Outcomes
Prostate cancer		
NMU-induced epithelial dysplasia in the rat ventral prostate	γ T-enriched diet (20 mg/kg) for 4 mo (124)	γT ↓ NMU-induced epithelial dysplasia by 38% and cell proliferation, COX-2, and MMP-9 in the ventral prostate
PhIP-induced prostate carcinogenesis in hCYP1A mice	γTmTs (0.3%) or tocopherols (i.e., $\gamma \text{T}, \delta \text{T},$ or αT at 0.2% in diet) (125)	γTmTs or tocopherols ↓ PhIP-induced mouse PINs by 66%; δT was stronger than γT or αT in this effect
TRAP	γT at 50, 100, and 200 mg/kg diet for 7–10 wk; αT at 50 mg/kg diet (126)	γT, not αT, dose-dependently ↓ PIN to adenocarcinoma and ↑ apoptosis in prostate tissue
TRAMP mice	γTmTs at 0.1% in diet (113, 127)	vTmTs ↓ palpable tumor incidence by 75% and PINs and ↑ Nrf2 and its targeted genes by ↓ CpG methylation
LNCaP-xenograft model in nude mice	γ T at 125 mg/kg bw 3 times/wk for 4 wk (88); α T or δ T at 0.3% of diet for 48 d (128)	γ T and δ T, but not α T, \downarrow the growth of LNCaP tumor by 30% and induced apoptosis in tumors
Dunning R3327H adenocarcinoma cells implanted in male Copenhagen rats Human PCa cell 22Rv1-implanted tumor in Nu/J mice	 γT at 200 mg/kg or its combination with lycopene (250 mg/kg diet) (129) MSA (40.95 μg/kg bw), γT at 20.83 or 41.66 mg/kg bw in corn oil, alone or in combinations by gavage (130) 	Neither y T or its combination with lycopene had a significant impact on tumor growth Combination of MSA with y T showed the strongest ↓ tumor volume (~25%), serum PSA and Ki67
Colon cancer		
AOM-induced ACF formation in the colon of male F344 rats	γTmTs at 0.1% of diet (131); δT, γT, αT, or γTmTs at 0.2% of diet (20); <i>d</i> -α-tocopheryl acetate (500 mg/kg) (132)	γT , δT , or $\gamma TmTs$ (131) \downarrow ACF with relative efficacy of δT (62%) $> \gamma T \sim \gamma TmTs$ (48%) (20), whereas $\alpha T \leftrightarrow$ ACF (20, 132)
AOM-induced and DSS-promoted colon cancer in mice (polyps as endpoints)	γT at 0.1% of diet in male Balb/c mice (21); γTmTs at 0.17% and 0.3% in male CF-1 mice (133)	γT ↓ moderate colitis–promoted large-size tumors by 36–80% (21); γTmTs ↓ tumorigenesis, nitrotyrosine, PGE ₂ , and LTB ₄ (133)
Colon tumorigenesis induced by PhIP/DSS in hCYP1A mice	γT , δT , or αT at 0.2% of diet starting 1 wk before PhIP administration and continuing until being killed; in some studies, δT intervention started after PhIP and DSS (134)	γT and δT (but not αT) ↓ tumor multiplicity by 45% and 64%, but not tumor volume, and ↓ oxidative stress, NF-κB, and STAT3; when intervention started after PhIP/DSS, δT was much less effective
Breast cancer		
NMU-induced hormone-dependent mammary tumor in female Sprague-Dawley rats	γTmTs at 0.1%, 0.3%, and 0.5% (135, 136); $\alpha \text{T},$ $\delta \text{T},$ or γT (0.3% diet) or γTmTs (0.3%) (137)	γ TmTs \downarrow tumor growth and multiplicity by 38%, 50%, and 80% and \uparrow p21, p27, caspase 3, and PPAR- γ (136); δ T and γ T (not α T), \downarrow tumor multiplicity or weight and \uparrow apoptosis (137)
Estrogen 17β-estradiol E2-promoted mammary hyperplasia and tumor in ACI rats	γ TmTs at 0.3% of diet for 1, 3, 7, and 14 d after estrogen implantation (138); γ TmTs at 0.05%, 0.1%, 0.3%, and 0.5% of diet for 31 wk (139)	γTmTs ↔ E2-induced mammary hyperplasia, but ↓ oxidative stress (138); γTmTs (0.3% or 0.5%) ↓ tumor size by 52% or 42% and serum estradiol; ↑ CYP1A1 (metabolizing estrogen), ↑ Nrf2, and ↑ PPAR-γ (139)
ER ⁺ MCF7 cancer cells orthotopically implanted in immunodeficient mice implanted with estrogen pellets	γ TmTs at 0.05%, 0.1%, 0.3%, and 0.5% of diet for 9 wk (139)	γTmTs at all doses ↓ mammary tumor and appeared to be more effective in this model than ACI rats
MMTV/ErbB2/neu female transgenic mice that overexpress Her-2	$\alpha T, \gamma T,$ or δT (0.3% of diet) or $\gamma TmTs$ (0.3% of diet) for 35 wk (137)	Only γT diet ↑ the median tumor latency, but none of the treatment was effective in reducing tumor weight
Murine 66c1-4 GFP or MDA-MB231-GFP breast cancer cells implanted into mice	RRR- α T, synthetic α T, or RRR- γ T at 358 or 2000 mg/kg diet (140, 141)	γ T and synthetic α T, but not natural RRR- α T, \downarrow mammary cancer growth and lung metastasis by 57%, whereas α T counteracted γ T's anticancer effect
Lung cancer		
H1299 human lung cancer cell xenografts in NCr Nu/Nu mice	$\alpha T, \gamma T, \delta T,$ and $\gamma TmTs$ at 0.17% or 0.3% of diet (142)	δT, γT, or γTmTs (not αT) ↓ tumor size by 50%, 35%, and 40%, respectively; ↓ DNA damage and nitrotyrosine; ↑ apoptosis
CL13 murine lung cancer cells implanted (subcutaneously) in A/J mice	γTmTs at 0.1% or 0.3% (143)	$\gamma \text{TmTs} \downarrow$ the growth of CL13 tumors by 50–80%

¹ The typical formula of γ TmTs contains 57–60% γ T, 21–24% δ T, 12–13% α T, and 0.5–1.5% β T. ACF, aberrant cypt foci; AOM, azoxymethan; bw, body weight; COX-2, cyclo-oxygenase 2; CYP1A1, cytochrome P4501A1; DSS, dextran sodium sulfate; ER⁺, estrogen receptor positive; hCYP1A, humanized CYP1A; LTB₄, leukotriene B₄; MMP-9, matrix metallopeptidase 9; MSA, methaneseleninic acid; NMU, N-methyl-N-nitrosourea; Nrf2, nuclear factor erythroid 2–related factor; PCa, prostate cancer; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine; PIN, prostate intraepithelial neoplasia; PSA, prostate specific antigen; STAT3, signal transducer and activator of transcription factor 3; TRAMP, transgenic adenocarcinoma of the mouse prostate; TRAP, transgenic rat for adenocarcinoma of prostate; α T, α -tocopherol; β T, β -tocopherol; δ T, δ -tocopherol; γ T, γ -tocopherol; γ TmT, γ T-rich mixed tocopherol; \downarrow , suppressed or inhibited; \uparrow , increased or enhanced; \leftrightarrow , showed no effect.

that captures the development of neoplasia to tumor, yT or mixed tocopherols suppressed cancer progression from PIN to adenocarcinoma and decreased palpable tumor incidence, which was accompanied by increased apoptosis and enhanced Nrf2 via modulating DNA methylation (111, 126, 127). In LNCaP- or 22Rvl-implanted xenograft models that mimic late-stage tumor, yT modestly suppressed tumor growth, and its combination with methaneselenic acid more strongly inhibited tumor development than either agent alone. On the other hand, in the study in Dunning R3327H adenocarcinoma rats, which represented slowgrowing prostate cancer (adenocarcinoma or beyond) (144), γT or its combination with lycopene did not have a significant impact on tumor growth, probably because of the relatively low dose used (0.02% of diet) or lack of efficacy in blocking further progression of adenocarcinoma to advanced cancer.

Overall, γT -, δT -, or γT -rich tocopherols appeared to be capable of inhibiting initiation and early-stage prostate intraepithelial neoplasia formation and suppressing progression from prostate intraepithelial neoplasias to adenocarcinoma, whereas they only modestly slowed the growth of relatively late-stage tumors. Therefore, γT , δT , and $\gamma TmTs$ are likely promising agents for preventing relatively early-stage prostate cancer.

CRC. The chemopreventive effectiveness of αT , γT , δT , and γ TmTs has been extensively studied in carcinogen-induced CRC models, including AOM-induced aberrant crypt foci (ACF), a surrogate marker of precancerous lesions. In this model, γT , δT , and $\gamma TmTs$ significantly inhibited ACF formation and δT appeared to be stronger than γT or γ TmTs in this effect, whereas α T was found to be ineffective (Table 1). α T was also not effective toward colon tumorigenesis induced by meat-derived PhIP (145). In addition to AOM-induced ACF formation, AOM combined with DSS, which causes colon inflammation, has been shown to accelerate tumor formation in the colon. The AOM-DSS model is considered to mimic inflammatory bowel disease-promoted colorectal cancer in humans (146, 147). In the AOM-DSS-induced model, γT or $\gamma TmTs$ suppressed the multiplicity of polyps that are adenomas or adenocarcinomas, although their anticancer effectiveness appeared to depend on the severity of colitis. In particular, γT was more effective in attenuating tumor formation with moderate colitis than with severe colitis (21). In a recent study, γT and δT but not αT were found to significantly reduce colon tumor formation that was induced by PhIP and promoted by DSS-induced colitis in CYP1A-humanized (hCYP1A) mice. In this model, the chemopreventive effects were much stronger when tocopherol intervention started before PhIP-DSS was administered than after initiation and promotion of carcinogenesis (134). These results indicate that γT , δT , or $\gamma TmTs$, but not αT , are able to suppress chemically induced colon tumorigenesis.

Breast cancer. The effect of tocopherols on breast cancer development varied with animal models. For instance, γT or δT , but not αT , suppressed estrogen receptor (ER)-positive breast cancer induced by NMU in female Sprague-Dawley rats. In this model, yTmTs also dose-dependently suppressed NMU-induced mammary tumors (Table 1). Furthermore, γ TmTs (at 0.3% or 0.5%) suppressed estrogen-induced hyperplasia and mammary tumor in ACI rats, via decreasing serum estradiol, by inducing the estrogenmetabolizing enzyme CYP1A1 (139). yT and yTmTs, but not αT , were effective in suppressing xenograft MDA-MB231 (ER-negative, low HER-2) or MCF7 (ERpositive, low HER-2) human breast cancer growth in nude mice (148). It is noticeable that an estrogen-sensitive MCF7 xenograft appeared to be more responsive to the treatment of yTmTs than the ER-negative MDA-MB231 tumor. On the other hand, none of αT , γT , δT , or $\gamma TmTs$ had a significant impact on tumor multiplicity or weight in MMTV-Erb2/neu transgenic mice with HER-2 overexpression, although yT significantly increased the median mammary tumor latency. These data indicate that γT , δT , and $\gamma TmTs$, but not αT , are capable of preventing estrogen-dependent mammary tumors, but none of these is effective in inhibiting HER-2-positive breast cancer.

Lung cancer. γT , δT , and $\gamma TmTs$, but not αT , have been reported to inhibit tumor growth and decrease oxidative stress markers in lung cancer xenograft models (Table 1).

Anticancer efficacy of tocotrienols in animal models

Early animal studies on tocotrienols for chemoprevention have focused on tocotrienol-rich fractions (TRFs) extracted from palm oil (4). These TRFs showed anticancer effects in xenograft breast cancer studies in nude mice (149), spontaneous hepatocarcinogenesis, induced lung cancer (150), and UV-B–damaged skin (95, 151). Here we will focus on recent research on the in vivo anticancer effects of γ TE, δ TE, and TRFs from various sources (palm oil, rice bran, and annatto), as well as their use as adjuvant therapy for sensitizing chemotherapeutic agents or radiation therapy (**Table 2**).

Pancreatic cancer. The potential chemoprevention effect of δTE against pancreatic cancer has been examined in various transgenic mouse models. Mutations in the KRAS proto-oncogene are found in >90% of invasive pancreatic ductal adenocarcinomas (PDAs) and are believed to represent a key initiating event of pancreatic cancer (168). LSL-K-ras^{G12D};PDX-1Cre mice bear the Kras mutation in pancreas epithelium, which therefore mimics the most common genetic lesion of the human PDA. Importantly, these mice developed preinvasive and invasive ductal pancreatic cancers that were histologically indistinguishable from those observed in patients with PDA (168). In this model, δTE at 200 mg/kg body weight 2 times/d resulted in increased median survival, decreased incidence of invasive cancer, and suppressed pancreatic intraepithelial neoplasm progression (152). In addition to this model, δTE or its combination with genetiabine was

Animal model	Vitamin E forms and doses	Outcomes
Pancreatic cancer LSL- <i>Kra</i> s(G12D)/+;Pdx-1-Cre (KPC) pancreatic cancer	8TE at 200 mg/kg, po, twice a day for 12 mo (152)	8TE↑ median survival (11.1 mo vs. 9.7 mo in controls), ↓
mouse model LSL-Kras(G12D)/++,LST7rp53(R172H)/+;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer	δTE (200 mg/kg), po, twice a day, or δTE (oral) combined with gemcitabine (100 mg/kg, i.p. twice a week) (153)	PanIN progression, and ↓ incidence of invasive cancer &TE or the combination ↑ survival rate (70% or 90%) compared with 30% with gemcitabine alone, ↓
بالمتميمطية عالمة عصمت متقصصيم ومكبط MMA محمسانا	atte at 400 mod/of wide on the one wide how on the attern	epithelial-to-mesenchymal transition, and 1 antiproliferation markers (p21, p27)
Human with Facaz particleaut cancer cells ortholopically implanted in athymic Nu/Nu mice.	YIE at 400 mg/kg pw, po, daily of YIE with generatine at 25 mg/kg via i.p. twice a week (78)	Viet Lutinor growin (by 40%) and LINF-Kb; the Corribination was stronger than either agent
Human pancreatic cancer AsPC-1 xenograft model in female NIH SCID nude mice	αlt, βlt, γlt and δlt at 200 mg/kg (in olive oil) gavaged twice daily for 4 wk; or δTE plus gemcitabine (100 mg/kg, i.p, twice a week) (79)	$\delta IE > \gamma IE > other tocotrienols in 1 tumor development. \delta TE \downarrow NF + \kappa B and targeted genes in tumors; the combination 1 (50%) pancreatic tumor more strongly than \delta TE (40%)$
Human pancreatic cancer (PANC-1) implanted in nude mice	γ TE (50 mg/kg, i.p.) or its combination with gemcitabine (50 mg/kg, i.y.) (23)	γTE did not affect tumor growth but the combination (tumor growth by $\sim 50\%$
An orthotopic xenograft model of human PDA stem-like cells Prostate cancer	8TE at 200 mg/kg, po, twice a day with or without gemcitabine (100 mg/kg, i.p., twice a week) for 4 wk (107)	8TE 1 the growth (volume by 45%) and metastasis of gemcitabine-resistant PDA human stem-like cells.
PC3 human AlPCa in xenograft model	γTE at 50 mg/kg, i.p., 5 times/wk alone or coadminstered with docetaxel (7.5 mg/kg, i.p.) (154)	YTE or its combination with docetaxel ↓ tumor growth by 52% and 61%, respectively; YTE accumulated in tumors, ↑ apoptosis, and ↓ proliferation
LNCaP human prostate cancer xenograft model in Nu/Nu mice	γT or $\gamma T E$ at 125 mg/kg bw by oral gavage 3 times/wk for 5 wk (88)	γ TE was stronger than γ T in ↓ the growth of LNCaP xenograft (by 50%) in nude mice
VCaP human hormone-refractory prostate cancer xenograft model in NCr immunodeficient mice	mTEs containing α TE, β TE, γ TE, and α T at 8.3, 1.5, 4.6, 11.4, and 6 g out of 100 g) at 200 or 400 mg/kg bw, by gavage 3 times/wk for 8 wk (112)	The mTEs dose-dependently ↓ tumor growth and ↑ CDK inhibitors p21 and p27 and ↑ H3K9 acetylation at their promoters with ↓ expression of histone deacetylase
Human prostate cancer bone metastasizing PC3 cells implanted in athymic mice	γTE at 400 mg/kg bw was injected subcutaneously in the necks of nude mice, which were then irradiated at the rear part of the body including the location of turmor (155)	The size of the turnors was \downarrow by ~40% only in γ TE- injected and irradiated mice, whereas there was \uparrow lipid peroxidation in turnors and kidney (potential side effect in kidney)
TRAMP mice	$\gamma TE-rich$ mTEs containing 13%, 1%, 19%, 5%, and 13% αTE , $\beta TE, \gamma TE, \delta TE, and \alpha T, respectively, at 0.1%, 0.3%, and 1% in an AIN-76A diet (156)$	Tocotriero's dose-dependently ↓ tumor incidence (50–70%), weight (by 75%), and high-grade neoplastic lesions, and ↑ BAD, caspase-3, p21, and p27
Breast cancer Spontaneous mammary tumors in FVB/N HER-2/neu transgenic mice	Annatto tocotrienols (δTE and γTE at 9:1) at 50 or 100 mg/kg bw in olive oil by gavage 3 times/wk (157)	Tocotrienols dose-dependently ↓ tumor size/mass by 75% and lung metastases; ↑ apoptosis and cell senescence in mammary clands
Human breast cancer MDA-MB-231 xenograft model in nude mice Female Balb/c mice inoculated with 4T1 cells in mammary pad to induce tumor Melanoma and skin cancer	YTE (50 mg/kg, i.p.) or its combination with docetaxel (2 mg/kg, i.p.) (23) TRF from palm oil (1 mg/d, oral) alone with i.v. injection of DCs pulsed with tumor lysate (158)	The combination was much stronger than either alone in ↓ tumor growth by ≤80% and 40–50%, respectively. Although DC injection ↓ tumor growth, TRF plus DC impulse with tumor lysate showed stronger antitumor effects
Aggressive melanoma B6(F10) implanted in C57BL female mice	Study 1: γ TE at 116 and 924 µmol/kg diet given 10 d before and 28 d after tumor cell implantation; study 2: γ TE at 2 mmol/kg diet given after melanomas were established	YTE delayed and 1 melanoma growth; YTE at 2 mmol/kg prolonged the survival of mice by 30%; the combination of &TE and lovastatin 1 tumor weight but not either alone

858 Jiang

tinued)
2 (Con
TABLE

Animal model	Vitamin E forms and doses	Outcomes
	(159); 8TE at 62.5 mg/kg bw + lovastatin at 12.5 mg/kg bw in diet (160)	
B6(F10) melanoma or A431 human epidermoid carcinoma cells implanted in female immunodeficient Balb/c mice	Transferrin-bearing, multilamellar vesicles entrapping tocotrienol for improving uptake by cancer cells that	The novel tocotrienol formulation, but not free agent, led to complete tumor eradication for 40% of B16-F10
	overexpress transferrin receptors, daily tail vein injection of 10 µg TRF (α TE, γ TE, δ TE, and α T at 17.6%, 23.1%, 15.1%, and 15.3%) (161)	melanoma tumors and 20% of A431 epidermoid carcinoma tumors
Mice xenografted with A375 melanoma cells Liver, colon, and gastric cancer	S TE at 100 mg/kg gavaged in olive oil, daily, 5 d/wk (162)	δTE) (by 60.6%) the growth and progression of melanoma
Murine hepatoma MH134 xenografit in C3H/HeN mice	γ TE and δ TE (0.1%) in diet (95)	YIE and STE 1 the growth of hepatoma by 45% and 55% and were accumulated in tumor but not in normal tissues
AOM-DSS-induced colon cancer in male C57BL/6 mice	Supplementation with TRF with 0.03% tocopherols (mainly α T) + 0.07% mTEs; S TE/ y TE (8:1) at 0.075% in diet for 77 d (163)	Compared with a control diet, a &TE/YTE diet ↓ tumor multiplicity by 42%, whereas TRF nonsignificantly affected tumor number
Orthotopic HCC patient xenograft model in Balb/c nude female mice	γTE at 3.25 mg/mouse via daily gavage (164)	γ TE \downarrow tumor growth by 65% and suppressed angiogenesis
Colon adenocarcinoma (DLD-1) xenograft in nude mice	Rice bran tocotrienols at 10 mg/mouse containing α TE, γ TE, and δ TE at 0.36, 9.22, and 0.42 mg via daily gavage (165)	Tocotrienols ↓ tumor growth and ↑ p21, p27, and caspase 3/9, ↓ Akt phosphorylation; 6TE was stronger against hypoxic tumor cells than nomoxic cells
SW620 colon cancer cell–implanted xenograft model in Balb/c nude mice	TRFs from palm oil (αT, αTE, βTE, γTE, and δTE at 0.4%, 9.8%, 4.1%, 45.6%, and 40%) at 5, 10, and 20 mg/kg by gavage (166)	TRFs ↓ turnor growth by ≤70–80% and ↓ β-catenin and Wnt-1 expression in turnors
HCT116 human colon cancer cell–implanted tumor in athymic nu/nu mice	γ TE at 100 mg/kg, po, or γ TE with capecitabine (60 mg/kg, twice a week); corn oil as vehicle (167)	The combination of γT E and capecitabine was stronger than either agent alone in inhibition of tumor growth
SNU-5 gastric cancer cells implanted xenograft model	γTE at 1 mg/kg or its combination with capecitabine at 60 mg/kg via i.p. injection (122)	γTE \downarrow gastric turnor growth by 66% and the combination was more effective (by >90%) in this effect
¹ AIPCa, androgen-independent prostate cancer; AOM, azoxymethan; BAD, Bcl-	¹ AIPCa, androgen-independent prostate cancer; AOM, azoxymethan; BAD, BC-2-associated death promoter; bw, body weight; CDK, cyclin-dependent kinase; DC, dendritic cell; DSS, dextran sodium sulfate; HCC, human hepatocellular carcinoma;	endritic cell; DSS, dextran sodium sulfate; HCC, human hepatocellular carcinoma;

HER.2, human epidemial growth factor receptor 2, mTE, mixed tocotrienol; PanN, pancreatic intraspithelial neoplasm; PDA, pancreatic ductal adenocarcinoma; po, orally, SCID, severe-combined immunodeficient; TRAMP, transgenic adenocarcinoma; pro, orally, SCID, severe-combined immunodeficient; TRAMP, transgenic adenocarcinoma of the mouse prostate; TRF, tocotrienol-ich fraction; $\alpha_{\rm T}$, α -tocotrienol; $\beta_{\rm T}$, β -tocotrienol; $\gamma_{\rm T}$, suppressed or inhibited; \uparrow , increased or enhanced; \leftrightarrow , showed no effect.

also tested in a more aggressive pancreatic model, LSL-*Kras*(G12D)/+;LSL*Trp53*(R172H)/+;Pdx-1-Cre (KPC), in which mice are genetically engineered with double mutations (i.e., oncogenic *Kras* and tumor suppressor *p53*) (153). In this model, δ TE and its combination with gemcitabine suppressed tumor development and markedly enhanced survival compared with control or even gemcitabine-treated mice.

In addition to the role in chemoprevention, to cotrienols or their combinations with chemotherapeutic drugs have been tested for the treatment of pancreatic cancer in various xenograft models. To this end, both γ TE and δ TE have been reported to inhibit pancreatic tumor growth and enhanced the antitumor efficacy of gemcitabine in nude mice that were orthotopically implanted with different types of human pancreatic tumors (Table 1). The mechanisms underlying these anticancer actions include inhibition of NF- κ B and cell proliferation and induction of apoptosis.

Prostate cancer. The effect of tocotrienols on prostate tumor growth has been evaluated in various xenograft models that represent relatively late-stage prostate cancer, although one study tested mixed tocotrienols in TRAMP mice, which resemble relatively aggressive prostate cancer development. Specifically, yTE inhibits tumor development in nude mice implanted with androgen-sensitive human prostate adenocarcinoma (LNCaP) xenografts and is stronger than yT in this effect (88). yTE alone inhibited androgenindependent PC3 prostate tumor growth in nude mice, and its combination with docetaxel showed an even stronger inhibition of tumor growth (154). In another xenograft model, mixed tocotrienols in diets inhibited prostate tumor development and increased CDK inhibitors p21 and p27 via elevating H3K9 acetylation of their promoters (112). In addition, mixed tocotrienols have been shown to suppress prostate tumor development in the TRAMP model (156). These results indicate that yTE or mixed tocotrienols may be effective for slowing down prostate cancer progression, although their efficacy should be further tested in patient-derived xenograft models.

Breast cancer. A $\delta TE/\gamma TE$ mixture inhibited spontaneous breast cancer development and lung metastasis in HER-2/neu transgenic mice (157), which suggests that tocotrienols may be stronger than tocopherols, which failed to inhibit the growth of HER-2 overexpression mammary tumors (137). In nude mice implanted with breast and pancreatic cancer cells, the combination of γTE and docetaxel led to much stronger suppression of tumor growth than either agent alone (23). In addition, a TRF enhanced anticancer effectiveness of dendritic cell–based immunotherapy in a xenograft model in immunocompetent mice (158).

Melanoma and skin cancer. γ TE and δ TE or a tocotrienol mixture have been shown to delay and suppress tumor

growth compared with vehicle control groups in B16 (F10)- or A375-implanted melanoma in mice (159, 162). Interestingly, the delivery of a tocotrienol mixture via targeting transferrin receptors on tumor cells resulted in enhanced anticancer efficacy (161). In addition, a combination of dietary δ TE and lovastatin suppressed the growth of implanted mouse melanoma B16(F10) more strongly than either agent alone in C57BL female mice (160).

Liver, colon, and gastric cancer. γ TE and δ TE have been reported to inhibit the growth of hepatoma in xenograft models, and tocotrienols were found to be accumulated specifically in tumors but not in normal tissues (95, 164). Tocotrienols extracted from rice and palm oil have been shown to block colon cancer growth in 2 xenograft models in mice (165, 166). A δ TE and γ TE (8:1) mixture is stronger than TRF (γ TE rich) in the inhibition of AOM-DSS-induced colon cancer in mice (163). γ TE improved capecitabine's anticancer effects in an HCT116 xenograft model (**Table 3**). In addition, γ TE was found to improve the anticancer efficacy of capecitabine in a human gastric cancer–xenograft mouse model (122).

 γTE as an adjuvant in radiation therapy. Tocotrinols have been shown to enhance the efficacy of cancer radiation therapy. Kumar et al. (155) reported that γ -irradiation combined with γTE at 400 mg/kg body weight (via subcutaneous injection in the neck), but not radiation or vTE alone, reduced the size of established tumors and increased lipid peroxidation in tumors in athymic mice implanted with human prostate cancer PC-3 cells. Meanwhile, yTE at 200 mg/kg body weight administered subcutaneously before radiation protected hematopoietic stem and progenitor cells in mice after total-body irradiation (170) and accelerated the recovery of white blood cells in irradiated mice (171). Consistently, δTE at 400 mg/kg (subcutaneous) protected 100% of CD2F1 mice from total-body irradiation-induced death, increased regeneration of hematopoietic microfoci and stem and progenitor cells in irradiated mouse bone marrow, and protected human CD34⁺ cells from radiationinduced damage (172). In addition, γTE (400 mg/kg) improved postirradiation survival, enhanced hematopoietic recovery, and reduced intestinal radiation injury in mice (173). These studies strongly suggest that tocotrienols may be useful for adjuvant therapy for increasing treatment efficacy and reducing irradiation-associated adverse effects, including decreased white blood cell counts.

Toxicity of tocopherols and tocotrienols

When tocopherols and tocotrienols are considered for long-term use for cancer prevention, it is important to systemically evaluate the safety of these compounds. Tasaki et al. (174, 175) investigated the potential toxicity of long-term (≤ 2 y) exposure to a tocotrienol mixture in Wistar Hannover rats. The tocotrienol mixture contained α TE 21.4%, β TE 3.5%, γ TE 36.5%, δ TE 8.6%, α T 20.5%,

TABLE 3	Published and ongoing clinic	l studies on tocopherols and tocotrien	ols for cancer prevention or therapy ¹
---------	------------------------------	--	---

Study design (ref)	Subjects or purpose of study	Vitamin E forms	Outcomes
Breast cancer			
TRF on breast cancer: double-blinded, placebo-controlled intervention (169)	Women aged 40–60 y, with tumor node metastases stage I or II breast cancer or estrogen receptor; 120 subjects in each group; the study lasted for 5 y	Control: 20 mg TAM with placebo (soybean oil); intervention: TRF at 200 mg + 20 mg TAM	No statistical difference between TAM and TAM + tocotrienols in mortality rate
Tocotrienols in combination with neoadjuvant chemotherapy (NCT02909751)	Whether tocotrienols can improve the efficacy and reduce the side effects of chemotherapy before surgery for breast cancer	Tocotrienol, daily 300 mg ×3 along with chemotherapy drugs	Correlation of changes in NK cells, or ctDNA, with pathological response; grade 3–4 side effects
Pancreatic cancer			
Window-of-opportunity preoperative trial: open-label, phase I trial (16)	25 patients for curative surgical resection with presumptive premalignant or malignant neoplasms of exocrine pancreas	δTE at escalation doses of 200–3200 mg/d for 2 wk before surgery	δTE is generally safe and induced apoptosis in dysplastic or malignant tissues from pancreas
CRC			
γTmTs on CRC: randomized early phase I trial (NCT00905918)	Patients undergoing surgery for colorectal cancer	γ TmTs for 1 or 2 wk	Bioavailability, plasma F2-isoprostane, inflammation markers
Tocotrienols as adjuvants for treatment of CRC, randomized and double-blinded (NCT02705300)	Side effects to Folfoxiri + tocotrienol/placebo as first-line treatment of metastatic colorectal cancer	Standard chemotherapy plus tocotrienol, daily 300 mg ×3	Side effects and survival benefits
Prostate cancer			
γTmTs on prostate cancer: randomized early phase I trial (NCT00895115) Ovarian cancer	Patients at risk of prostate cancer or who have prostate cancer	γ TmTs for 1 or 2 wk	Bioavailability, plasma PSA, F2-isoprostane, inflammation markers
Cabazitaxel vs. tocotrienol: a phase 2 randomized, open-label study; crossover (NCT02560337)	Patients with recurrent ovarian cancer after failure of standard therapy	Cabazitaxel (25 mg/m ²) vs. tocotrienol (300 mg ×3); 3 mo	Survival rate and cancer progression
Tocotrienols as a nutritional supplement with bevacizumab; phase 2, single-group assignment (NCT02399592)	Patients with advanced ovarian cancer	Bevacizumab plus tocotrienol, 300 mg	Disease progression
Lung cancer Tocotrienols as nutritional supplement; randomized, double-blind (NCT02644252)	In patients with advanced NSCLC	Tocotrienol, 300 mg ×3 plus standard chemotherapy	Disease progression-free survival

¹ Data were from published data and https://clinicaltrials.gov. This table shows non- α T vitamin E forms for cancer prevention or treatment in ongoing or published trials, whereas large trials that focus on α T have been extensively reviewed elsewhere (4, 6). This table does not include the studies whose sole purpose is for obtaining pharmacokinetic data, in which vitamin E forms are used as part of other dietary factors or antioxidants, or where the vitamin E form was not clearly identified. For those ongoing (unpublished) studies, the clinicaltrials.gov identifiers (NCT) are indicated. CRC, colorectal cancer; ctDNA, circulating tumor DNA; NSCLC, non-small cell lung cancer; PSA, prostate specific antigen; ref, reference; TAM, tamoxifen; TRF, tocotrienol-rich fraction; α T, α -tocopherol; γ TmT, γ T-rich mixed tocopherol; δ TE, δ -tocotrienol; X3, 3 times/d.

 β T 0.7%, γ T 1.0%, and δ T 0.5%. It was observed that 1-y chronic exposure to 2% tocotrienol mixture diets resulted in a reduction in the survival rate by 42% in rats. A 2-y exposure to a 1–2% tocotrienol mixture induced highly proliferative liver lesions (nodular hepatocellular hyperplasia), although no obvious neoplastic characteristics were found from increased exposure. In a 13-wk feeding study, Nakamura et al. (176) reported that a similar tocotrienol mixture did not cause any observable adverse effects at 120 mg/kg body weight, although there slight adverse effects shown at 473 mg/kg and adverse effects including decreased body weight at 1895 mg/kg body weight. In addition, Yap et al. (154) determined the acute toxicity of γ TE by single

intraperitoneal injection of escalating doses in C57BL/6 black male mice and found that γ TE at 800 mg/kg body weight did not cause any deaths among 5 injected mice, whereas deaths started to occur when 1000 mg/kg was used. In addition to research in animals, the safety of relatively high doses of γ T and δ TE has been examined in healthy humans. Supplementation of γ T at \leq 1.2 g for 8 d did not result in obvious adverse effects in healthy subjects (14). In a multiple-dose study, δ TE was found to be well tolerated at doses \leq 3.2 g for 14 d, although some subjects experienced grade 1 or 2 adverse events (19). These results indicate that vitamin E forms are generally safe in healthy subjects. On the other hand, the safety of these compounds under disease conditions or in the presence of other drugs remains to be determined.

Anticancer effects in human intervention studies

All of the large randomized trials on vitamin E focused only on α T with regard to cancer-preventive potential and have shown inconsistent and disappointing outcomes, which have been extensively reviewed elsewhere (4, 6). With regard to other vitamin E forms, there are observational studies that reported both positive and negative associations between their intake and cancer risk. Given the potential confounding factors in diets, limited conclusions can be drawn on the basis of the epidemiologic data. In this review, we focus on published intervention trials and currently ongoing clinical human studies (based on https://clinicaltrials.gov) that aim to test the safety and anticancer efficacy of tocotrienols and (non-aT) tocopherols (Table 3).

In a double-blinded, placebo-controlled clinical trial, potentially improved therapeutic outcomes from a combination of a TRF with tamoxifen were tested in women with earlystage breast cancer. After 5 y of follow-up, tocotrienol adjuvant therapy did not significantly improve breast cancer-specific survival rate compared with tamoxifen-placebo controls, although there was a nonsignificant 60% decrease in the risk of mortality due to breast cancer in the tocotrienol group compared with the tamoxifen-alone control group (169). In an open-label, dose-escalation phase I trial, patients with presumptive premalignant or malignant neoplasms of the exocrine pancreas for curative surgical resection were given various doses of δTE at 200-3200 mg 2 times/d for 13 d. The endpoints of this study included pharmacokinetics, general safety, and the effect of supplements on cell apoptosis in pancreatic tissues. The key findings include that **STE** was generally safe and induced apoptosis in dysplastic or malignant tissues from the pancreas (16). In addition to these 2 published studies, there are several ongoing trials investigating the effect of yTmTs on colon and prostate cancer or tocotrienols on cancer treatment (Table 3).

Conclusions

Because aT supplementation failed to show cancerpreventive effects in many clinical studies but was reported to increase prostate cancer risk in the SELECT, the role of other tocopherols and tocotrienols in cancer prevention has also been questioned. However, as reviewed here, accumulating cell-based and preclinical studies indicate that the form and metabolism of vitamin E are critically important factors for vitamin E-related cancer prevention. In particular, mechanistic and cell-based studies have shown that γT , δT , γTE , and δTE are much stronger than αT in blocking multiple cancer-promoting pathways, including COX- and 5-LOX-catalzyed eicosanoids, and γTE and δTE inhibit key transcription factors such as NF- κ B and STAT3 (8). These vitamin E forms, but not aT, inhibit cancer cell proliferation and induce cancer cell death via modulating various signaling pathways, including sphingolipids. Unlike αT , which is largely unmetabolized, γT , δT , $\gamma T E$, and $\delta T E$ are

readily metabolized and their long-chain metabolite 13'-COOHs are unique dual inhibitors of COXs and 5-LOX and have stronger anti-inflammatory and anticancer effects than some unmetabolized vitamers (60, 61, 71). Consistently, γ T, δ T, γ TE, and δ TE have been shown to suppress tumor development in relevant animal cancer models, whereas α T was often ineffective in similar preclinical studies. Therefore, it is noteworthy that the lack of anticancer effects of α T in preclinical models is in agreement with no beneficial effect of its supplementation observed in many randomized clinical trials (4–6).

Studies in preclinical animal models have shown that γT , δT , γTE , and δTE exhibit varied anticancer efficacy, and γTE and δTE often appear to be stronger than tocopherols in these effects. The relative effectiveness also depends on the stage and severity of tumorigenesis. For instance, γT , δT , and vTmTs are effective in preventing early-stage cancer progression but show modest protection of relatively advanced or aggressive stages of cancer. γT , δT , and $\gamma TmTs$ significantly suppressed tumorigenesis or precancerous lesions when the intervention started before carcinogenesis was initiated, whereas they were less effective if supplementation began after the cancer-promotion phase. These tocopherols inhibited estrogen-dependent breast cancer but were ineffective in HER-2-positive breast cancer, whereas yTE was able to suppress Her2-positive breast cancer in transgenic mice. γTE was stronger than γT in inhibiting the growth of prostate LNCaP xenograft tumor. Furthermore, δTE inhibited pancreatic cancer in genetic models with aggressive driver mutations. These preclinical observations are in agreement with those in cell-based studies in which tocotrienols exhibited stronger anticancer and anti-inflammatory effects than tocopherols, which may be attributed to the fact that tocotrienols are accumulated at higher concentrations in some cancer cells or tumors than tocopherols and are more readily metabolized to bioactive metabolites in vivo (68).

Although different vitamin E forms clearly have anticancer potential, in the future more preclinical studies are needed to validate and optimize their efficacy for cancer prevention and therapy, with an emphasis on translation from bench to bedside. First, with the exception of δTE on pancreatic cancer, more preclinical work should be conducted to examine the cancer-prevention efficacy of vitamin E forms in genetically engineered "humanized" models that have driver mutations found in human cancers. In these studies, anticancer efficacy should be tested at different stages of cancer development. Second, combinations of vitamin E forms with other preventive agents such as statins or NSAIDs should be explored to achieve enhanced chemoprevention effects. Because vitamin E forms are rich in different foods and dietary components may have a profound impact on vitamin E's anticancer effects and bioavailability, it is important to examine and compare the use of food approaches with supplementation for cancer prevention. Furthermore, the potential use of tocotrienols in adjuvant chemotherapy for enhancing treatment efficacy of traditional therapeutic agents should be further tested in patient-derived cancer models. In addition, the use of nutrition factors for cancer control or preventing recurrence after chemo- or radiation therapy is a largely uncharted territory. I propose that vitamin E forms hold tremendous promise in cancer control, which warrants investigation. Whether vitamin E forms are capable of enhancing immunotherapy should also be examined.

With strong preclinical data and further studies in animal models, vitamin E forms or their combinations with other agents should be examined in secondary and even tertiary prevention trials in individuals who are at high risk of cancer (e.g., those who have multiple precancerous, genetically cancer-driven mutations; familial adenomatous polyposis; or chronic conditions that promote cancer such as colitis) (177). With regard to treatment, the following areas can be explored: the use of vitamin E forms as adjuvant therapy for improving traditional chemotherapy or radiation therapy or the use of vitamin E forms for cancer control and prevention of recurrence as well as improving cancer patients' quality of life and survival rate. In addition to efficacy, potential toxicity or side effects of vitamin E forms alone or in combinations with other agents should be extensively investigated before they can generally be recommended as chemoprevention or therapeutic agents.

Acknowledgments

The sole author was responsible for all aspects of the manuscript.

References

- Kensler TW, Spira A, Garber JE, Szabo E, Lee JJ, Dong Z, Dannenberg AJ, Hait WN, Blackburn E, Davidson NE, et al. Transforming cancer prevention through precision medicine and immuneoncology. Cancer Prev Res (Phila) 2016;9:2–10.
- Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, Hawk ET. Molecular cancer prevention: current status and future directions. CA Cancer J Clin 2015;65:345–83.
- Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science 2013;339:1546–58.
- Moya-Camarena SY, Jiang Q. The role of vitamin E forms in cancer prevention and therapy - Studies in human intervention trials and animal models. In: Sarkar FHE, editor. Nutraceuticals and cancer. Springer Science Business Media B.V.; 2011. p. 323–54. Available from: http://dx.doi.org/310.1007/1978-1094-1007-2630-1007_1015.
- Jiang Q, Christen S, Shigenaga MK, Ames BN. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001;74:714–22.
- Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong AN, Yang CS. Cancerpreventive activities of tocopherols and tocotrienols. Carcinogenesis 2010;31:533–42.
- Klein EA, Thompson IM Jr., Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, Minasian LM, Ford LG, Parnes HL, Gaziano JM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011;306:1549–56.
- Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 2014;72:76–90.
- Theriault A, Chao JT, Wang Q, Gapor A, Adeli K. Tocotrienol: a review of its therapeutic potential. Clin Biochem 1999;32:309–19.
- McLaughlin PJ, Weihrauch JL. Vitamin E content of foods. J Am Diet Assoc 1979;75:647–65.
- 11. Brigelius-Flohé R, Traber MG. Vitamin E: function and metabolism. FASEB J 1999;13:1145–55.

- 12. Traber MG, Leonard SW, Bobe G, Fu X, Saltzman E, Grusak MA, Booth SL. α-Tocopherol disappearance rates from plasma depend on lipid concentrations: studies using deuterium-labeled collard greens in younger and older adults. Am J Clin Nutr 2015;101:752–9.
- Burbank AJ, Duran CG, Almond M, Wells H, Jenkins S, Jiang Q, Yang C, Wang T, Zhou H, Hernandez ML, et al. A short course of gamma-tocopherol mitigates LPS-induced inflammatory responses in humans ex vivo. J Allergy Clin Immunol 2017 May 12. (Epub ahead of print; DOI: 10.1016/j.jaci.2017.04.030).
- Wiser J, Alexis NE, Jiang Q, Wu W, Robinette C, Roubey R, Peden DB. In vivo gamma-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects. Free Radic Biol Med 2008;45:40–9.
- Yap SP, Yuen KH, Wong JW. Pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under different food status. J Pharm Pharmacol 2001;53:67–71.
- 16. Springett GM, Husain K, Neuger A, Centeno B, Chen DT, Hutchinson TZ, Lush RM, Sebti S, Malafa MP. A phase I safety, pharmacokinetic, and pharmacodynamic presurgical trial of vitamin E delta-tocotrienol in patients with pancreatic ductal neoplasia. EBio-Medicine 2015;2:1987–95.
- Bardowell SA, Ding X, Parker RS. Disruption of P450-mediated vitamin E hydroxylase activities alters vitamin E status in tocopherol supplemented mice and reveals extra-hepatic vitamin E metabolism. J Lipid Res 2012;53:2667–76.
- Jiang Q, Xu T, Huang J, Jannasch AS, Cooper B, Yang C. Analysis of vitamin E metabolites including carboxychromanols and sulfated derivatives using liquid chromatography tandem mass spectrometry. J Lipid Res 2015;56:2217–25.
- Mahipal A, Klapman J, Vignesh S, Yang CS, Neuger A, Chen DT, Malafa MP. Pharmacokinetics and safety of vitamin E deltatocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolites. Cancer Chemother Pharmacol 2016;78:157–65.
- 20. Guan F, Li G, Liu AB, Lee MJ, Yang Z, Chen YK, Lin Y, Shih W, Yang CS. delta- and gamma-Tocopherols, but not alpha-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats. Cancer Prev Res (Phila) 2012;5:644–54.
- 21. Jiang Q, Jiang Z, Hall YJ, Jang Y, Snyder PW, Bain C, Huang J, Jannasch A, Cooper B, Wang Y, et al. Gamma-tocopherol attenuates moderate but not severe colitis and suppresses moderate colitis-promoted colon tumorigenesis in mice. Free Radic Biol Med 2013;65:1069–77.
- Bardowell SA, Duan F, Manor D, Swanson JE, Parker RS. Disruption of mouse cytochrome p450 4f14 (Cyp4f14 gene) causes severe perturbations in vitamin E metabolism. J Biol Chem 2012;287: 26077–86.
- Ling MT, Luk SU, Al-Ejeh F, Khanna KK. Tocotrienol as a potential anticancer agent. Carcinogenesis 2012;33:233–9.
- 24. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7.
- 25. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883–99.
- 26. Rokavec M, Oner MG, Hermeking H. Inflammation-induced epigenetic switches in cancer. Cell Mol Life Sci 2016;73:23–39.
- Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010; 10:181–93.
- Marnett LJ. Aspirin and the potential role of prostaglandins in colon cancer. Cancer Res 1992;52:5575–89.
- Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part II). J Natl Cancer Inst 1998;90:1609–20.
- Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J Natl Cancer Inst 1998;90:1529–36.
- 31. Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, Messerini L, Vannacci A, Capaccioli S, Perna F, et al. Inhibition of 5lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol Cancer Ther 2006;5:2716–26.
- Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 2001;91:737–43.

- 33. Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 2008; 14:6525–30.
- 34. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001;276:18563–9.
- Sun Y, Tang XM, Half E, Kuo MT, Sinicrope FA. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res 2002;62:6323–8.
- Narko K, Ristimaki A, MacPhee M, Smith E, Haudenschild CC, Hla T. Tumorigenic transformation of immortalized ECV endothelial cells by cyclooxygenase-1 overexpression. J Biol Chem 1997;272:21455–60.
- Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998;93: 705–16.
- Harada S, Nagy JA, Sullivan KA, Thomas KA, Endo N, Rodan GA, Rodan SB. Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J Clin Invest 1994;93:2490–6.
- 39. Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res 2000;60:5040–4.
- Kawamori T, Rao CV, Seibert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 1998;58:409–12.
- Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S, Seibert K, Rao CV. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000;60:293–7.
- 42. Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci 2007; 103:24–32.
- Giovannucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett WC, Speizer FE. Aspirin and the risk of colorectal cancer in women. N Engl J Med 1995;333:609–14.
- Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1:11–21.
- Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 2006;6:130–40.
- Zhang YP, Wan YD, Sun YL, Li J, Zhu RT. Aspirin might reduce the incidence of pancreatic cancer: a meta-analysis of observational studies. Sci Rep 2015;5:15460.
- Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 2007;369:1603–13.
- 48. Chan AT, Arber N, Burn J, Chia WK, Elwood P, Hull MA, Logan RF, Rothwell PM, Schror K, Baron JA. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev Res (Phila) 2012;5: 164–78.
- 49. Dubois RW, Melmed GY, Henning JM, Bernal M. Risk of upper gastrointestinal injury and events in patients treated with cyclooxygenase (COX)-1/COX-2 nonsteroidal antiinflammatory drugs (NSAIDs), COX-2 selective NSAIDs, and gastroprotective cotherapy: an appraisal of the literature. J Clin Rheumatol 2004;10:178–89.
- Grosser T, Fries S, FitzGerald GA. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 2006;116:4–15.
- McKellar G, Madhok R, Singh G. The problem with NSAIDs: what data to believe? Curr Pain Headache Rep 2007;11:423–7.
- 52. Scheiman JM. The impact of nonsteroidal anti-inflammatory druginduced gastropathy. Am J Manag Care 2001;7:S10–4.

- 53. Rainsford KD. Inhibition by leukotriene inhibitors, and calcium and platelet-activating factor antagonists, of acute gastric and intestinal damage in arthritic rats and in cholinomimetic-treated mice. J Pharm Pharmacol 1999;51:331–9.
- 54. Rainsford KD. The ever-emerging anti-inflammatoriesL have there been any real advances? J Physiol Paris 2001;95:11–9.
- 55. Mohammed A, Janakiram NB, Li Q, Choi CI, Zhang Y, Steele VE, Rao CV. Chemoprevention of colon and small intestinal tumorigenesis in APC(Min/+) mice by licofelone, a novel dual 5-LOX/COX inhibitor: potential implications for human colon cancer prevention. Cancer Prev Res (Phila) 2011;4:2015–26.
- 56. Bias P, Buchner A, Klesser B, Laufer S. The gastrointestinal tolerability of the LOX/COX inhibitor, licofelone, is similar to placebo and superior to naproxen therapy in healthy volunteers: results from a randomized, controlled trial. Am J Gastroenterol 2004;99:611–8.
- 57. Kulkarni SK, Singh VP. Licofelone: the answer to unmet needs in osteoarthritis therapy? Curr Rheumatol Rep 2008;10:43–8.
- Rao CV, Janakiram NB, Madka V, Devarkonda V, Brewer M, Biddick L, Lightfoot S, Steele VE, Mohammed A. Simultaneous targeting of 5-LOX-COX and EGFR blocks progression of pancreatic ductal adenocarcinoma. Oncotarget 2015;6:33290–305.
- 59. Jiang Q, Elson-Schwab I, Courtemanche C, Ames BN. gamma-Tocopherol and its major metabolite, in contrast to alpha- tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc Natl Acad Sci USA 2000;97:11494–9.
- 60. Jiang Q, Yin X, Lill MA, Danielson ML, Freiser H, Huang J. Longchain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Proc Natl Acad Sci USA 2008;105:20464–9.
- 61. Jiang Z, Yin X, Jiang Q. Natural forms of vitamin E and 13'carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. J Immunol 2011;186:1173–9.
- 62. Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN. gamma-Tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci USA 1997;94:3217–22.
- 63. Cooney RV, Franke AA, Harwood PJ, Hatch-Pigott V, Custer LJ, Mordan LJ. γ-Tocopherol detoxification of nitrogen dioxide: superiority to α-tocopherol. Proc Natl Acad Sci USA 1993;90:1771–5.
- 64. Jiang Q, Ames BN. gamma-Tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J 2003;17:816–22.
- 65. Jiang Q, Lykkesfeldt J, Shigenaga MK, Shigeno ET, Christen S, Ames BN. gamma-Tocopherol supplementation inhibits protein nitration and ascorbate oxidation in rats with inflammation. Free Radic Biol Med 2002;33:1534–42.
- 66. Wagner JG, Jiang Q, Harkema JR, Ames BN, Illek B, Roubey RA, Peden DB. gamma-Tocopherol prevents airway eosinophilia and mucous cell hyperplasia in experimentally induced allergic rhinitis and asthma. Clin Exp Allergy 2008;38:501–11.
- Wagner JG, Jiang Q, Harkema JR, Illek B, Patel DD, Ames BN, Peden DB. Ozone enhancement of lower airway allergic inflammation is prevented by gamma-tocopherol. Free Radic Biol Med 2007;43:1176–88.
- Freiser H, Jiang Q. γ-Tocotrienol and γ-tocopherol are primarily metabolized to conjugated 2-(β-carboxyethyl)-6-hydroxy-2,7,8-trimethylchroman and sulfated long-chain carboxychromanols in rats. J Nutr 2009;139:884–9.
- 69. Jiang Q, Freiser H, Wood KV, Yin X. Identification and quantitation of novel vitamin E metabolites, sulfated long-chain carboxychromanols, in human A549 cells and in rats. J Lipid Res 2007;48:1221–30.
- Sontag TJ, Parker RS. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism: novel mechanism of regulation of vitamin E status. J Biol Chem 2002;277:25290–6.
- 71. Jang Y, Park NY, Rostgaard-Hansen AL, Huang J, Jiang Q. Vitamin E metabolite 13'-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice. Free Radic Biol Med 2016;95:190–9.

- Sun B, Karin M. The therapeutic value of targeting inflammation in gastrointestinal cancers. Trends Pharmacol Sci 2014;35:349–57.
- 73. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009;15:103–13.
- 74. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118:285–96.
- Wang Y, Jiang Q. gamma-Tocotrienol inhibits lipopolysaccharideinduced interleukin-6 and granulocyte colony-stimulating factor by suppressing C/EBPbeta and NF-kappaB in macrophages. J Nutr Biochem 2013;24:1146–52.
- Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K. Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages. Lipids 2009;44:787–97.
- 77. Qureshi AA, Reis JC, Papasian CJ, Morrison DC, Qureshi N. Tocotrienols inhibit lipopolysaccharide-induced pro-inflammatory cytokines in macrophages of female mice. Lipids Health Dis 2010;9:143.
- 78. Kunnumakkara AB, Sung B, Ravindran J, Diagaradjane P, Deorukhkar A, Dey S, Koca C, Yadav VR, Tong Z, Gelovani JG, et al. γ-Tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment. Cancer Res 2010;70:8695–705.
- Husain K, Francois RA, Yamauchi T, Perez M, Sebti SM, Malafa MP. Vitamin E delta-tocotrienol augments the antitumor activity of gemcitabine and suppresses constitutive NF-kappaB activation in pancreatic cancer. Mol Cancer Ther 2011;10:2363–72.
- 80. Ahn KS, Sethi G, Krishnan K, Aggarwal BB. gamma-Tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 2007;282:809–20.
- Xiong A, Yu W, Liu Y, Sanders BG, Kline K. Elimination of ALDH+ breast tumor initiating cells by docosahexanoic acid and/or gamma tocotrienol through SHP-1 inhibition of Stat3 signaling. Mol Carcinog 2016;55:420–30.
- Wang Y, Park NY, Jang Y, Ma A, Jiang Q. Vitamin E gammatocotrienol inhibits cytokine-stimulated NF-kappaB activation by induction of anti-inflammatory A20 via stress adaptive response due to modulation of sphingolipids. J Immunol 2015;195:126–33.
- Hymowitz SG, Wertz IE. A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 2010;10:332–41.
- Ren Z, Pae M, Dao MC, Smith D, Meydani SN, Wu D. Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice. J Nutr 2010;140:1335–41.
- Radhakrishnan AK, Mahalingam D, Selvaduray KR, Nesaretnam K. Supplementation with natural forms of vitamin E augments antigenspecific TH1-type immune response to tetanus toxoid. BioMed Res Int 2013;2013:782067.
- Mahalingam D, Radhakrishnan AK, Amom Z, Ibrahim N, Nesaretnam K. Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers. Eur J Clin Nutr 2011;65:63–9.
- 87. Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G. gamma-Tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 2012;130:685–93.
- Shah SJ, Sylvester PW. gamma-Tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity. Exp Biol Med (Maywood) 2005;230:235–41.
- Wali VB, Bachawal SV, Sylvester PW. Endoplasmic reticulum stress mediates gamma-tocotrienol-induced apoptosis in mammary tumor cells. Apoptosis 2009;14:1366–77.
- Yap WN, Chang PN, Han HY, Lee DT, Ling MT, Wong YC, Yap YL. gamma-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br J Cancer 2008;99:1832–41.

- Shah S, Sylvester PW. Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells. Exp Biol Med (Maywood) 2004;229:745–55.
- Sylvester PW, Shah SJ, Samant GV. Intracellular signaling mechanisms mediating the antiproliferative and apoptotic effects of gammatocotrienol in neoplastic mammary epithelial cells. J Plant Physiol 2005;162:803–10.
- 93. Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN. γ-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci USA 2004;101:17825–30.
- Husain K, Francois RA, Hutchinson SZ, Neuger AM, Lush R, Coppola D, Sebti S, Malafa MP. Vitamin E delta-tocotrienol levels in tumor and pancreatic tissue of mice after oral administration. Pharmacology 2009;83:157–63.
- Hiura Y, Tachibana H, Arakawa R, Aoyama N, Okabe M, Sakai M, Yamada K. Specific accumulation of gamma- and delta-tocotrienols in tumor and their antitumor effect in vivo. J Nutr Biochem 2009;20:607–13.
- Kannappan R, Gupta SC, Kim JH, Aggarwal BB. Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr 2012; 7:43–52.
- 97. Campbell SE, Stone WL, Lee S, Whaley S, Yang H, Qui M, Goforth P, Sherman D, McHaffie D, Krishnan K. Comparative effects of RRRalpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines. BMC Cancer 2006;6:13.
- Park SK, Sanders BG, Kline K. Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res Treat 2010;124:361–75.
- 99. Gopalan A, Jiang Q, Jang Y, Sanders BG, Kline K. Involvement of de novo ceramide synthesis in gamma-tocopherol and gammatocotrienol-induced apoptosis in human breast cancer cells. Mol Nutr Food Res 2012;56:1803–11.
- 100. Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, Yanai A, Ogura K, Omata M. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 2009;15:2248–58.
- Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008;9:139–50.
- 102. Hannun YA, Obeid LM. Many ceramides. J Biol Chem 2011;286: 27855–62.
- Ryland LK, Fox TE, Liu X, Loughran TP, Kester M. Dysregulation of sphingolipid metabolism in cancer. Cancer Biol Ther 2011;11:138–49.
- 104. Jang Y, Rao X, Jiang Q. gamma-Tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. J Nutr Biochem 2017;46:49–56.
- 105. Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R's of radiobiology revisited. Stem Cells 2010;28:639–48.
- 106. Luk SU, Yap WN, Chiu YT, Lee DT, Ma S, Lee TK, Vasireddy RS, Wong YC, Ching YP, Nelson C, Yap YL, Ling MT. gamma-Tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int J Cancer 2011;128:2182–91.
- 107. Husain K, Centeno BA, Coppola D, Trevino J, Sebti SM, Malafa MP. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis. Oncotarget 2017;8:31554–67.
- Gopalan A, Yu W, Sanders BG, Kline K. Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett 2013;328:285–96.
- 109. Ji X, Wang Z, Geamanu A, Goja A, Sarkar FH, Gupta SV. Deltatocotrienol suppresses Notch-1 pathway by upregulating miR-34a in nonsmall cell lung cancer cells. Int J Cancer 2012;131:2668–77.
- 110. Li XH, Ha CT, Fu D, Landauer MR, Ghosh SP, Xiao M. Deltatocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury. PLoS One 2015;10:e0122258.

- 111. Huang Y, Khor TO, Shu L, Saw CL, Wu TY, Suh N, Yang CS, Kong AN. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J Nutr 2012;142:818–23.
- 112. Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J Nutr Biochem 2017;40:155–63.
- 113. Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 2014;19:393–406.
- 114. de Gonzalo-Calvo D, Lopez-Vilaro L, Nasarre L, Perez-Olabarria M, Vazquez T, Escuin D, Badimon L, Barnadas A, Lerma E, Llorente-Cortes V. Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: a molecular and clinicopathological study. BMC Cancer 2015;15:460.
- 115. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, Borge L, Roques J, Gayet O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2015;112:2473–8.
- 116. Yang Z, Xiao H, Jin H, Koo PT, Tsang DJ, Yang CS. Synergistic actions of atorvastatin with gamma-tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells. Int J Cancer 2010;126:852–63.
- 117. Wali VB, Bachawal SV, Sylvester PW. Suppression in mevalonate synthesis mediates antitumor effects of combined statin and gammatocotrienol treatment. Lipids 2009;44:925–34.
- Fernandes NV, Guntipalli PK, Mo H. d-delta-Tocotrienol-mediated cell cycle arrest and apoptosis in human melanoma cells. Anticancer Res 2010;30:4937–44.
- Hussein D, Mo H. d-delta-Tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells. Pancreas 2009;38:e124–36.
- 120. Song BL, DeBose-Boyd RA. Insig-dependent ubiquitination and degradation of 3-hydroxy-3-methylglutaryl coenzyme a reductase stimulated by delta- and gamma-tocotrienols. J Biol Chem 2006;281:25054–61.
- 121. Kannappan R, Ravindran J, Prasad S, Sung B, Yadav VR, Reuter S, Chaturvedi MM, Aggarwal BB. gamma-Tocotrienol promotes TRAILinduced apoptosis through reactive oxygen species/extracellular signal-regulated kinase/p53-mediated upregulation of death receptors. Mol Cancer Ther 2010;9:2196–207.
- 122. Manu KA, Shanmugam MK, Ramachandran L, Li F, Fong CW, Kumar AP, Tan P, Sethi G. First evidence that gamma-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-kappaB pathway. Clin Cancer Res 2012;18 2220–9.
- Reiter E, Jiang Q, Christen S. Anti-inflammatory properties of alphaand gamma-tocopherol. Mol Aspects Med 2007;28:668–91.
- 124. Sanches LD, Santos SA, Carvalho JR, Jeronimo GD, Favaro WJ, Reis MD, Felisbino SL, Justulin LA Jr. Protective effect of gammatocopherol-enriched diet on N-methyl-N-nitrosourea-induced epithelial dysplasia in rat ventral prostate. Int J Exp Pathol 2013;94:362–72.
- 125. Chen JX, Li G, Wang H, Liu A, Lee MJ, Reuhl K, Suh N, Bosland MC, Yang CS. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice. Cancer Lett 2016;371:71–8.
- 126. Takahashi S, Takeshita K, Seeni A, Sugiura S, Tang M, Sato SY, Kuriyama H, Nakadate M, Abe K, Maeno Y, et al. Suppression of prostate cancer in a transgenic rat model via gamma-tocopherol activation of caspase signaling. Prostate 2009;69:644–51.
- 127. Barve A, Khor TO, Nair S, Reuhl K, Suh N, Reddy B, Newmark H, Kong AN. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer2009;124:1693–9.
- 128. Huang H, He Y, Cui XX, Goodin S, Wang H, Du ZY, Li D, Zhang K, Tony Kong AN, DiPaola RS, et al. Potent inhibitory effect of deltatocopherol on prostate cancer cells cultured in vitro and grown as xenograft tumors in vivo. J Agric Food Chem 2014;62:10752–8.

- 129. Lindshield BL, Ford NA, Canene-Adams K, Diamond AM, Wallig MA, Erdman JW Jr. Selenium, but not lycopene or vitamin E, decreases growth of transplantable dunning R3327-H rat prostate tumors. PLoS One 2010;5:e10423.
- 130. Singh CK, Ndiaye MA, Siddiqui IA, Nihal M, Havighurst T, Kim K, Zhong W, Mukhtar H, Ahmad N. Methaneseleninic acid and gammatocopherol combination inhibits prostate tumor growth in vivo in a xenograft mouse model. Oncotarget 2014;5:3651–61.
- Newmark HL, Huang MT, Reddy BS. Mixed tocopherols inhibit azoxymethane-induced aberrant crypt foci in rats. Nutr Cancer 2006;56:82–5.
- 132. Chung H, Wu D, Han SN, Gay R, Goldin B, Bronson RE, Mason JB, Smith DE, Meydani SN. Vitamin E supplementation does not alter azoxymethane-induced colonic aberrant crypt foci formation in young or old mice. J Nutr 2003;133:528–32.
- 133. Ju J, Hao X, Lee MJ, Lambert JD, Lu G, Xiao H, Newmark HL, Yang CS. A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer Prev Res (Phila) 2009;2:143–52.
- 134. Chen JX, Liu A, Lee MJ, Wang H, Yu S, Chi E, Reuhl K, Suh N, Yang CS. delta- and gamma-Tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages. Mol Carcinog 2017;56:172–83.
- 135. Suh N, Paul S, Lee HJ, Ji Y, Lee MJ, Yang CS, Reddy BS, Newmark HL. Mixed tocopherols inhibit N-methyl-N-nitrosourea-induced mammary tumor growth in rats. Nutr Cancer 2007;59:76–81.
- 136. Lee HJ, Ju J, Paul S, So JY, DeCastro A, Smolarek A, Lee MJ, Yang CS, Newmark HL, and Suh N. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPARgamma. Clin Cancer Res 2009;15:4242–9.
- 137. Smolarek AK, So JY, Burgess B, Kong AN, Reuhl K, Lin Y, Shih WJ, Li G, Lee MJ, Chen YK, et al. Dietary administration of delta- and gamma-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor-positive, but not HER-2 breast cancer. Cancer Prev Res (Phila) 2012;5:1310–20.
- 138. Das Gupta S, So JY, Wall B, Wahler J, Smolarek AK, Sae-Tan S, Soewono KY, Yu H, Lee MJ, Thomas PE, et al. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Mol Carcinog 2015;54:916–25.
- 139. Das Gupta S, Sae-tan S, Wahler J, So JY, Bak MJ, Cheng LC, Lee MJ, Lin Y, Shih WJ, Shull JD, et al. Dietary gamma-tocopherol-rich mixture inhibits estrogen-induced mammary tumorigenesis by modulating estrogen metabolism, antioxidant response, and PPARgamma. Cancer Prev Res (Phila) 2015;8:807–16.
- 140. Yu W, Jia L, Park SK, Li J, Gopalan A, Simmons-Menchaca M, Sanders BG, Kline K. Anticancer actions of natural and synthetic vitamin E forms: RRR-alpha-tocopherol blocks the anticancer actions of gamma-tocopherol. Mol Nutr Food Res 2009;53:1573–81.
- 141. Yu W, Jia L, Wang P, Lawson KA, Simmons-Menchaca M, Park SK, Sun L, Sanders BG, Kline K. In vitro and in vivo evaluation of anticancer actions of natural and synthetic vitamin E forms. Mol Nutr Food Res 2008;52:447–56.
- 142. Li GX, Lee MJ, Liu AB, Yang Z, Lin Y, Shih WJ, Yang CS. delta-Tocopherol is more active than alpha- or gamma-tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prev Res (Phila) 2011;4:404–13.
- 143. Lambert JD, Lu G, Lee MJ, Hu J, Ju J, Yang CS. Inhibition of lung cancer growth in mice by dietary mixed tocopherols. Mol Nutr Food Res 2009;53:1030–5.
- 144. Lamb DJ, Zhang L. Challenges in prostate cancer research: animal models for nutritional studies of chemoprevention and disease progression. J Nutr 2005;135:3009S–15S.
- 145. Hagiwara A, Boonyaphiphat P, Tanaka H, Kawabe M, Tamano S, Kaneko H, Matsui M, Hirose M, Ito N, Shirai T. Organ-dependent modifying effects of caffeine, and two naturally occurring antioxidants alpha-tocopherol and n-tritriacontane-16,18-dione, on 2-amino-1methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced mammary and colonic carcinogenesis in female F344 rats. Jpn J Cancer Res 1999;90:399–405.

- 146. Tanaka T. Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinog 2009;8:5.
- 147. Tanaka T. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. Int J Inflam 2012;2012:658786.
- 148. Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 2010;4:35–41.
- 149. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, Virgili F. Tocotrienol-rich fraction from palm oil affects gene expression in tumors resulting from MCF-7 cell inoculation in athymic mice. Lipids 2004;39:459–67.
- 150. Wada S, Satomi Y, Murakoshi M, Noguchi N, Yoshikawa T, Nishino H. Tumor suppressive effects of tocotrienol in vivo and in vitro. Cancer Lett 2005;229:181–91.
- 151. Shibata A, Nakagawa K, Kawakami Y, Tsuzuki T, Miyazawa T. Suppression of gamma-tocotrienol on UVB induced inflammation in HaCaT keratinocytes and HR-1 hairless mice via inflammatory mediators multiple signaling. J Agric Food Chem 2010;58:7013–20.
- 152. Husain K, Centeno BA, Chen DT, Fulp WJ, Perez M, Zhang Lee G, Luetteke N, Hingorani SR, Sebti SM, Malafa MP. Prolonged survival and delayed progression of pancreatic intraepithelial neoplasia in LSL-KrasG12D/+;Pdx-1-Cre mice by vitamin E delta-tocotrienol. Carcinogenesis 2013;34:858–63.
- 153. Husain K, Centeno BA, Chen DT, Hingorani SR, Sebti SM, Malafa MP. Vitamin E delta-tocotrienol prolongs survival in the LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer. Cancer Prev Res (Phila) 2013;6:1074–83.
- 154. Yap WN, Zaiden N, Luk SY, Lee DT, Ling MT, Wong YC, Yap YL. In vivo evidence of gamma-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology 2010;85:248–58.
- 155. Kumar KS, Raghavan M, Hieber K, Ege C, Mog S, Parra N, Hildabrand A, Singh V, Srinivasan V, Toles R, et al. Preferential radiation sensitization of prostate cancer in nude mice by nutraceutical antioxidant gamma-tocotrienol. Life Sci 2006;78:2099–104.
- Barve A, Khor TO, Reuhl K, Reddy B, Newmark H, Kong AN. Mixed tocotrienols inhibit prostate carcinogenesis in TRAMP mice. Nutr Cancer 2010;62:789–94.
- 157. Pierpaoli E, Viola V, Barucca A, Orlando F, Galli F, Provinciali M. Effect of annatto-tocotrienols supplementation on the development of mammary tumors in HER-2/neu transgenic mice. Carcinogenesis 2013;34:1352–60.
- 158. Abdul Hafid SR, Chakravarthi S, Nesaretnam K, Radhakrishnan AK. Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer. PLoS One 2013;8:e74753.
- 159. He L, Mo H, Hadisusilo S, Qureshi AA, Elson CE. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 1997;127:668–74.
- 160. McAnally JA, Gupta J, Sodhani S, Bravo L, Mo H. Tocotrienols potentiate lovastatin-mediated growth suppression in vitro and in vivo. Exp Biol Med (Maywood) 2007;232:523–31.
- 161. Fu JY, Zhang W, Blatchford DR, Tetley L, McConnell G, Dufes C. Novel tocotrienol-entrapping vesicles can eradicate solid tumors after intravenous administration. J Control Release 2011;154:20–6.
- 162. Montagnani Marelli M, Marzagalli M, Moretti RM, Beretta G, Casati L, Comitato R, Gravina GL, Festuccia C, Limonta P. Vitamin E delta-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells. Sci Rep 2016;6:30502.
- 163. Wada S, Naito Y, Matsushita Y, Nouchi M, Kawai M, Minami E, Aoi W, Ikeda S, Higashi A, Yoshikawa T. delta-Tocotrienol suppresses tumorigenesis by inducing apoptosis and blocking the COX-2/PGE2 pathway that stimulates tumor–stromal interactions in colon cancer. J Funct Foods 2017;35:428–35.

- 164. Siveen KS, Ahn KS, Ong TH, Shanmugam MK, Li F, Yap WN, Kumar AP, Fong CW, Tergaonkar V, Hui KM, et al. γ-Tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget 2014;5:1897–911.
- 165. Shibata A, Nakagawa K, Tsuduki T, Miyazawa T. delta-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy. J Nutr Biochem 2015; 26:832–40.
- 166. Zhang JS, Zhang SJ, Li Q, Liu YH, He N, Zhang J, Zhou PH, Li M, Guan T, Liu JR. Tocotrienol-rich fraction (TRF) suppresses the growth of human colon cancer xenografts in Balb/C nude mice by the Wnt pathway. PLoS One 2015;10:e0122175.
- 167. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. gamma-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 2016;115:814–24.
- 168. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437–50.
- 169. Nesaretnam K, Selvaduray KR, Abdul Razak G, Veerasenan SD, Gomez PA. Effectiveness of tocotrienol-rich fraction combined with tamoxifen in the management of women with early breast cancer: a pilot clinical trial. Breast Cancer Res 2010;12:R81.
- 170. Kulkarni S, Ghosh SP, Satyamitra M, Mog S, Hieber K, Romanyukha L, Gambles K, Toles R, Kao TC, Hauer-Jensen M, et al. gamma-Tocotrienol protects hematopoietic stem and progenitor cells in mice after total-body irradiation. Radiat Res 2010;173: 738–47.
- 171. Ghosh SP, Kulkarni S, Hieber K, Toles R, Romanyukha L, Kao TC, Hauer-Jensen M, Kumar KS. gamma-Tocotrienol, a tocol antioxidant as a potent radioprotector. Int J Radiat Biol 2009;85: 598–606.
- 172. Li XH, Fu D, Latif NH, Mullaney CP, Ney PH, Mog SR, Whitnall MH, Srinivasan V, Xiao M. Delta-tocotrienol protects mouse and human hematopoietic progenitors from gammairradiation through extracellular signal-regulated kinase/mammalian target of rapamycin signaling. Haematologica 2010;95:1996– 2004.
- 173. Berbée M, Fu Q, Boerma M, Wang J, Kumar KS, Hauer-Jensen M. gamma-Tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an HMG-CoA reductase-dependent mechanism. Radiat Res 2009;171: 596–605.
- 174. Tasaki M, Umemura T, Inoue T, Okamura T, Kuroiwa Y, Ishii Y, Maeda M, Hirose M, Nishikawa A. Induction of characteristic hepatocyte proliferative lesion with dietary exposure of Wistar Hannover rats to tocotrienol for 1 year. Toxicology 2008;250:143– 50.
- 175. Tasaki M, Umemura T, Kijima A, Inoue T, Okamura T, Kuroiwa Y, Ishii Y, Nishikawa A. Simultaneous induction of non-neoplastic and neoplastic lesions with highly proliferative hepatocytes following dietary exposure of rats to tocotrienol for 2 years. Arch Toxicol 2009;83: 1021–30.
- 176. Nakamura H, Furukawa F, Nishikawa A, Miyauchi M, Son HY, Imazawa T, Hirose M. Oral toxicity of a tocotrienol preparation in rats. Food Chem Toxicol 2001;39:799–805.
- 177. Meyskens FL Jr., Mukhtar H, Rock CL, Cuzick J, Kensler TW, Yang CS, Ramsey SD, Lippman SM, Alberts DS. Cancer prevention: obstacles, challenges and the road ahead. J Natl Cancer Inst 2015; 108:1–8.